General Information of Drug Combination (ID: DCOSU67)

Drug Combination Name
Crizotinib Imatinib
Indication
Disease Entry Status REF
Adenocarcinoma Investigative [1]
Component Drugs Crizotinib   DM4F29C Imatinib   DM7RJXL
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: OVCAR3
Zero Interaction Potency (ZIP) Score: 3.27
Bliss Independence Score: 4.92
Loewe Additivity Score: 2.93
LHighest Single Agent (HSA) Score: 1.62

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Crizotinib
Disease Entry ICD 11 Status REF
Non-small-cell lung cancer 2C25.Y Approved [2]
Crizotinib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Proto-oncogene c-Met (MET) TTNDSF4 MET_HUMAN Modulator [3]
ALK tyrosine kinase receptor (ALK) TTPMQSO ALK_HUMAN Modulator [3]
Proto-oncogene c-Ros (ROS1) TTSZ6Y3 ROS1_HUMAN Modulator [3]
HGF/Met signaling pathway (HGF/Met pathway) TTKA5LP NOUNIPROTAC Inhibitor [13]
------------------------------------------------------------------------------------
Crizotinib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [14]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [15]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [15]
------------------------------------------------------------------------------------
Crizotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [16]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [16]
------------------------------------------------------------------------------------
Crizotinib Interacts with 45 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [17]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [18]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Response To Substance [11]
ALK tyrosine kinase receptor (ALK) OTV3P4V8 ALK_HUMAN Decreases Response To Substance [19]
Prominin-1 (PROM1) OTBHV8NX PROM1_HUMAN Decreases Expression [10]
CD44 antigen (CD44) OT9TTJ41 CD44_HUMAN Decreases Expression [10]
Epithelial cell adhesion molecule (EPCAM) OTHBZK5X EPCAM_HUMAN Decreases Expression [10]
Cytidine deaminase (CDA) OT3HXP6N CDD_HUMAN Decreases Expression [10]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [20]
Acyl-CoA 6-desaturase (FADS2) OTUX531P FADS2_HUMAN Increases Expression [20]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases Expression [20]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [20]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Increases Expression [20]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [20]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [20]
Sterol regulatory element-binding protein 2 (SREBF2) OTBXUNPL SRBP2_HUMAN Increases Expression [20]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [20]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [20]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Decreases Activity [20]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Decreases Activity [20]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [11]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [11]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Decreases Secretion [21]
Lutropin subunit beta (LHB) OT5GBOVJ LSHB_HUMAN Decreases Secretion [21]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Activity [22]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [23]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [24]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [23]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [25]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [26]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [26]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [27]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [28]
Ras GTPase-activating-like protein IQGAP1 (IQGAP1) OTZRWTGA IQGA1_HUMAN Decreases Phosphorylation [29]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [28]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [11]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [30]
Echinoderm microtubule-associated protein-like 4 (EML4) OTJC45TA EMAL4_HUMAN Increases Mutagenesis [26]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [18]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [31]
Pro-epidermal growth factor (EGF) OTANRJ0L EGF_HUMAN Decreases Response To Substance [27]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [31]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Response To Substance [19]
Proheparin-binding EGF-like growth factor (HBEGF) OTLU00JS HBEGF_HUMAN Decreases Response To Substance [27]
Protransforming growth factor alpha (TGFA) OTPD1LL9 TGFA_HUMAN Decreases Response To Substance [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 DOT(s)
Indication(s) of Imatinib
Disease Entry ICD 11 Status REF
Acute lymphoblastic leukaemia 2A85 Approved [3]
Blast phase chronic myelogenous leukemia, BCR-ABL1 positive N.A. Approved [4]
Choroidal neovascularization 9B76 Approved [4]
Chronic eosinophilic leukemia N.A. Approved [4]
Chronic myelogenous leukaemia 2A20.0 Approved [5]
Chronic myeloid leukaemia 2A20 Approved [6]
Dermatofibrosarcoma protuberans N.A. Approved [4]
Gastrointestinal stromal tumour 2B5B Approved [4]
Leukemia N.A. Approved [4]
Malignant peripheral nerve sheath tumor N.A. Approved [4]
Myeloproliferative neoplasm 2A20 Approved [4]
Pulmonary hypertension BB01 Approved [4]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [7]
Intestinal cancer 2C0Z Phase 3 [5]
Lung cancer 2C25.0 Phase 2 [5]
Idiopathic hypereosinophilic syndrome N.A. Investigative [4]
Middle East Respiratory Syndrome (MERS) 1D64 Investigative [8]
Scleroderma 4A42 Investigative [4]
Severe acute respiratory syndrome (SARS) 1D65 Investigative [8]
Systemic mastocytosis 2A21.0 Investigative [9]
Imatinib Interacts with 5 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Mcl-1 messenger RNA (MCL-1 mRNA) TTN6ORK MCL1_HUMAN . [9]
Fusion protein Bcr-Abl (Bcr-Abl) TTS7G69 BCR_HUMAN-ABL1_HUMAN Inhibitor [35]
Platelet-derived growth factor receptor (PDGFR) TTI2WET NOUNIPROTAC Inhibitor [35]
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Inhibitor [35]
HUMAN fusion protein Bcr-Abl (Bcr-Abl) TTE63HY BCR_HUMAN/ABL1_HUMAN Inhibitor [8]
------------------------------------------------------------------------------------
Imatinib Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [36]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [37]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [15]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [38]
Organic anion transporting polypeptide 1A2 (SLCO1A2) DTE2B1D SO1A2_HUMAN Substrate [39]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Imatinib Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [40]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [41]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [42]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [43]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [44]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [45]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [46]
Prostaglandin G/H synthase 1 (COX-1) DE073H6 PGH1_HUMAN Metabolism [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Imatinib Interacts with 95 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Methylation [47]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [47]
Cytochrome P450 3A7 (CYP3A7) OTTCDHHM CP3A7_HUMAN Decreases Methylation [47]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Methylation [47]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Increases Expression [48]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [48]
Aldehyde dehydrogenase, mitochondrial (ALDH2) OTKJ9I3N ALDH2_HUMAN Decreases Expression [49]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Expression [49]
Fructose-bisphosphate aldolase C (ALDOC) OTEC13I5 ALDOC_HUMAN Decreases Expression [49]
Pyruvate dehydrogenase E1 component subunit beta, mitochondrial (PDHB) OT2NHE5E ODPB_HUMAN Decreases Expression [49]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [49]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [49]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Expression [49]
Eukaryotic translation initiation factor 4B (EIF4B) OTE8TXA8 IF4B_HUMAN Decreases Expression [49]
Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) OT5BZ1J9 P85A_HUMAN Decreases Expression [49]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [49]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [49]
Hexokinase-4 (GCK) OTR3Q0NN HXK4_HUMAN Decreases Expression [49]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [49]
Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform (PPP2CA) OT83PT85 PP2AA_HUMAN Increases Expression [49]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Expression [49]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [50]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [51]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [52]
Autophagy-related protein 13 (ATG13) OTYMHNEJ ATG13_HUMAN Increases Phosphorylation [32]
Platelet-derived growth factor subunit B (PDGFB) OTMFMFC3 PDGFB_HUMAN Decreases Expression [53]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Expression [54]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [55]
Keratin, type I cytoskeletal 14 (KRT14) OTUVZ1DW K1C14_HUMAN Increases Expression [56]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [57]
Heat shock protein beta-1 (HSPB1) OTHFZ8ED HSPB1_HUMAN Increases Expression [52]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [58]
Intercellular adhesion molecule 1 (ICAM1) OTTOIX77 ICAM1_HUMAN Increases Expression [52]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [59]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Decreases Expression [54]
Cathepsin B (CTSB) OTP9G5QB CATB_HUMAN Increases Expression [32]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Phosphorylation [60]
ATP-dependent 6-phosphofructokinase, muscle type (PFKM) OT1QY9JM PFKAM_HUMAN Decreases Expression [61]
Platelet-derived growth factor receptor beta (PDGFRB) OTYSNK9Q PGFRB_HUMAN Decreases Expression [53]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [62]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [52]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [63]
Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) OTA675TJ GTR1_HUMAN Decreases Expression [57]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [34]
Lysosome-associated membrane glycoprotein 1 (LAMP1) OTYE92QY LAMP1_HUMAN Increases Expression [32]
Ornithine decarboxylase (ODC1) OTNDAGRR DCOR_HUMAN Increases Expression [52]
Keratin, type II cytoskeletal 5 (KRT5) OTVGI9HT K2C5_HUMAN Increases Expression [56]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [24]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Expression [64]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Expression [53]
CCAAT/enhancer-binding protein beta (CEBPB) OTM9MQIA CEBPB_HUMAN Increases Expression [52]
Histidine decarboxylase (HDC) OT4WA5YQ DCHS_HUMAN Decreases Expression [65]
Transcription factor EB (TFEB) OTJUJJQY TFEB_HUMAN Affects Localization [32]
Fibroblast growth factor receptor 3 (FGFR3) OTSAXDIL FGFR3_HUMAN Decreases Expression [66]
Insulin-like growth factor-binding protein 4 (IGFBP4) OT2HZRBD IBP4_HUMAN Increases Expression [52]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [25]
Interleukin-4 receptor subunit alpha (IL4R) OTTXOTCW IL4RA_HUMAN Increases Expression [52]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [54]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Phosphorylation [52]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [59]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [59]
Caspase-1 (CASP1) OTZ3YQFU CASP1_HUMAN Increases Cleavage [55]
Catenin beta-1 (CTNNB1) OTZ932A3 CTNB1_HUMAN Decreases Expression [67]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [68]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [69]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [32]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Decreases Expression [61]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [32]
Heat shock factor protein 1 (HSF1) OTYNJ4KP HSF1_HUMAN Increases Expression [52]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Expression [67]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [63]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [70]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [62]
Forkhead box protein M1 (FOXM1) OT5887KR FOXM1_HUMAN Decreases Expression [67]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [71]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Increases Expression [32]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Increases Expression [32]
Nuclear receptor subfamily 0 group B member 2 (NR0B2) OT7UVICX NR0B2_HUMAN Increases Expression [72]
NGFI-A-binding protein 2 (NAB2) OTG4BDF3 NAB2_HUMAN Increases Expression [52]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Decreases Expression [73]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [58]
TRAF family member-associated NF-kappa-B activator (TANK) OTZSGFIK TANK_HUMAN Increases Expression [52]
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) OTZM6MHU NLRP3_HUMAN Increases Expression [55]
Bile acid receptor (NR1H4) OTWZLPTB NR1H4_HUMAN Increases Activity [72]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [74]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Expression [32]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [75]
V-type proton ATPase subunit H (ATP6V1H) OTX17GQ9 VATH_HUMAN Increases Expression [32]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Increases Response To Substance [76]
LYR motif-containing protein 9 (LYRM9) OT1MILTK LYRM9_HUMAN Affects Response To Substance [77]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [78]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Response To Substance [79]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Response To Substance [80]
Tyrosine-protein kinase Lyn (LYN) OTP686K2 LYN_HUMAN Decreases Response To Substance [69]
Serine/threonine-protein kinase PLK1 (PLK1) OTRZX45T PLK1_HUMAN Increases Response To Substance [62]
------------------------------------------------------------------------------------
⏷ Show the Full List of 95 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Astrocytoma DC2M3GQ U251 Investigative [1]
Chronic myelogenous leukemia DCYLG08 K-562 Investigative [1]
Large cell lung carcinoma DCCA60I NCI-H460 Investigative [1]
Melanoma DCMAGFQ UACC-257 Investigative [1]
Invasive ductal carcinoma DCK6T8D T-47D Investigative [81]
------------------------------------------------------------------------------------

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4903).
3 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
4 Imatinib FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5687).
6 FDA Approved Drug Products from FDA Official Website. 2019. Application Number: (ANDA) 078340.
7 ClinicalTrials.gov (NCT04356495) Treatments to Decrease the Risk of Hospitalization or Death in Elderly Outpatients With Symptomatic SARS-CoV-2 Infection (COVID-19). U.S. National Institutes of Health.
8 Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016 May;15(5):327-47.
9 Design and development of antisense drugs. Expert Opin. Drug Discov. 2008 3(10):1189-1207.
10 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
11 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.
12 Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012 Apr;24(4):852-8. doi: 10.1016/j.cellsig.2011.11.020. Epub 2011 Dec 8.
13 Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma.Drug Des Devel Ther. 2015 Aug 26;9:4897-907.
14 Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014 Mar 15;134(6):1484-94.
15 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
16 Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7.
17 Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos. 2013 Feb;41(2):343-52.
18 Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci. 2017 Jun 1;157(2):500-509. doi: 10.1093/toxsci/kfx063.
19 Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
20 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
21 Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 Nov 1;118(21):5302-9. doi: 10.1002/cncr.27450. Epub 2012 Apr 4.
22 Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63. doi: 10.1021/jm2007613. Epub 2011 Aug 18.
23 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
24 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
25 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
26 Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7535-40. doi: 10.1073/pnas.1019559108. Epub 2011 Apr 18.
27 Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012 Jul 1;18(13):3592-602. doi: 10.1158/1078-0432.CCR-11-2972. Epub 2012 May 2.
28 Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011 Dec;78(6):999-1005. doi: 10.1111/j.1747-0285.2011.01239.x. Epub 2011 Oct 31.
29 Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem. 2020 Dec 25;295(52):18105-18121. doi: 10.1074/jbc.RA120.015891. Epub 2020 Oct 21.
30 Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett. 2020 Feb 1;319:102-110. doi: 10.1016/j.toxlet.2019.11.007. Epub 2019 Nov 7.
31 Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012 Mar 1;18(5):1472-82. doi: 10.1158/1078-0432.CCR-11-2906. Epub 2012 Jan 10.
32 Imatinib disturbs lysosomal function and morphology and impairs the activity of mTORC1 in human hepatocyte cell lines. Food Chem Toxicol. 2022 Apr;162:112869. doi: 10.1016/j.fct.2022.112869. Epub 2022 Feb 16.
33 Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3532-40. doi: 10.1158/1078-0432.CCR-05-1778.
34 Sensitivity to imatinib therapy may be predicted by testing Wilms tumor gene expression and colony growth after a short in vitro incubation. Cancer. 2004 Sep 1;101(5):979-88. doi: 10.1002/cncr.20457.
35 A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem. 2007;7(14):1408-22.
36 Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit. 2011 Apr;33(2):244-50.
37 Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004 Nov 1;104(9):2940-2.
38 Pharmacologic markers and predictors of responses to imatinib therapy in patients with chronic myeloid leukemia. Leuk Lymphoma. 2008 Apr;49(4):639-42.
39 Environmental and genetic factors affecting transport of imatinib by OATP1A2. Clin Pharmacol Ther. 2011 Jun;89(6):816-20.
40 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
41 The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. Biomed Res Int. 2013;2013:789184.
42 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
43 Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879-94.
44 Drug Interactions Flockhart Table
45 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
46 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
47 Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br J Pharmacol. 2010 Nov;161(5):1059-69. doi: 10.1111/j.1476-5381.2010.00946.x.
48 Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005 Jul;4(7):747-52.
49 A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3378-83.
50 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
51 Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-B inactivation. Toxicol In Vitro. 2012 Apr;26(3):396-405.
52 Effects of Imatinib Mesylate (Gleevec) on human islet NF-kappaB activation and chemokine production in vitro. PLoS One. 2011;6(9):e24831. doi: 10.1371/journal.pone.0024831. Epub 2011 Sep 14.
53 Chemosensitization by STI571 targeting the platelet-derived growth factor/platelet-derived growth factor receptor-signaling pathway in the tumor progression and angiogenesis of gastric carcinoma. Cancer. 2005 May 1;103(9):1800-9. doi: 10.1002/cncr.20973.
54 Imatinib mesylate, a new kid on the block for the treatment of anti-neutrophil cytoplasmic autoantibodies-associated vasculitis?. Clin Exp Immunol. 2008 Mar;151(3):391-8. doi: 10.1111/j.1365-2249.2007.03572.x. Epub 2008 Jan 10.
55 Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol. 2022 Apr;96(4):1075-1087. doi: 10.1007/s00204-022-03245-x. Epub 2022 Feb 22.
56 Oral lichenoid eruption secondary to imatinib (Glivec). J Dermatolog Treat. 2004 Jul;15(4):253-5. doi: 10.1080/09546630410015556.
57 AMP-activated protein kinase activation primes cytoplasmic translocation and autophagic degradation of the BCR-ABL protein in CML cells. Cancer Sci. 2021 Jan;112(1):194-204. doi: 10.1111/cas.14698. Epub 2020 Nov 16.
58 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
59 Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood. 2004 Aug 15;104(4):1094-9. doi: 10.1182/blood-2003-12-4266. Epub 2004 Apr 20.
60 Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res. 2005 Feb 1;11(3):1336-41.
61 Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells. Chem Biol Interact. 2015 May 25;233:147-56. doi: 10.1016/j.cbi.2015.03.028. Epub 2015 Apr 8.
62 Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells. Oncotarget. 2015 Aug 21;6(24):20231-40. doi: 10.18632/oncotarget.4047.
63 Saikosaponin D disrupts platelet-derived growth factor- receptor/p38 pathway leading to mitochondrial apoptosis in human LO2 hepatocyte cells: a potential mechanism of hepatotoxicity. Chem Biol Interact. 2013 Oct 25;206(1):76-82. doi: 10.1016/j.cbi.2013.08.006. Epub 2013 Aug 28.
64 Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells. Cancer Res. 2010 Jan 1;70(1):150-9. doi: 10.1158/0008-5472.CAN-09-1449. Epub 2009 Dec 22.
65 The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood. 2006 Nov 15;108(10):3538-47. doi: 10.1182/blood-2005-12-028456. Epub 2006 Jul 18.
66 Increased expression of fibroblast growth factor receptor 3 in CD34+ BCR-ABL+ cells from patients with chronic myeloid leukemia. Leukemia. 2003 Dec;17(12):2418-25. doi: 10.1038/sj.leu.2403152.
67 Anthelmintic Niclosamide Disrupts the Interplay of p65 and FOXM1/-catenin and Eradicates Leukemia Stem Cells in Chronic Myelogenous Leukemia. Clin Cancer Res. 2017 Feb 1;23(3):789-803. doi: 10.1158/1078-0432.CCR-16-0226. Epub 2016 Aug 4.
68 In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol. 2002 Jul;30(7):729-37. doi: 10.1016/s0301-472x(02)00836-6.
69 Establishment and characterization of a novel imatinib-sensitive chronic myeloid leukemia cell line MYL, and an imatinib-resistant subline MYL-R showing overexpression of Lyn. Eur J Haematol. 2007 May;78(5):417-31. doi: 10.1111/j.1600-0609.2007.00835.x.
70 The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Mol Pharmacol. 2001 Mar;59(3):453-61. doi: 10.1124/mol.59.3.453.
71 Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicol Lett. 2022 Jul 15;365:11-23. doi: 10.1016/j.toxlet.2022.06.001. Epub 2022 Jun 6.
72 Investigation of imatinib and other approved drugs as starting points for antidiabetic drug discovery with FXR modulating activity. Biochem Pharmacol. 2012 Jun 15;83(12):1674-81. doi: 10.1016/j.bcp.2012.02.027. Epub 2012 Mar 7.
73 A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. Toxicol Lett. 2022 Jun 15;363:11-26. doi: 10.1016/j.toxlet.2022.05.002. Epub 2022 May 18.
74 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
75 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
76 Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib. Clin Chem. 2004 Jul;50(7):1205-13. doi: 10.1373/clinchem.2004.031112. Epub 2004 Apr 23.
77 Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol Sci. 2016 May;151(1):10-22. doi: 10.1093/toxsci/kfw032. Epub 2016 Mar 22.
78 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
79 Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res. 2005 Sep 15;65(18):8224-32. doi: 10.1158/0008-5472.CAN-05-0303.
80 Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur J Cancer. 2009 Jul;45(10):1877-89. doi: 10.1016/j.ejca.2009.04.005. Epub 2009 May 4.
81 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.