General Information of Drug Off-Target (DOT) (ID: OT5CSK9X)

DOT Name Fibronectin type III domain-containing protein 5 (FNDC5)
Synonyms Fibronectin type III repeat-containing protein 2
Gene Name FNDC5
Related Disease
Graves disease ( )
Thyroid gland papillary carcinoma ( )
Alzheimer disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Colorectal carcinoma ( )
Dementia ( )
Diabetic kidney disease ( )
Fatty liver disease ( )
Hyperlipidemia ( )
Myocardial fibrosis ( )
Neoplasm ( )
Non-alcoholic fatty liver disease ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Obesity ( )
Cardiovascular disease ( )
Ewing sarcoma ( )
Hepatocellular carcinoma ( )
High blood pressure ( )
Kidney cancer ( )
Metabolic disorder ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Rhabdomyosarcoma ( )
Type-1/2 diabetes ( )
Cardiomyopathy ( )
Advanced cancer ( )
Chronic kidney disease ( )
Chronic renal failure ( )
End-stage renal disease ( )
Neuroblastoma ( )
Non-alcoholic steatohepatitis ( )
UniProt ID
FNDC5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4LSD
Pfam ID
PF00041
Sequence
MHPGSPSAWPPRARAALRLWLGCVCFALVQADSPSAPVNVTVRHLKANSAVVSWDVLEDE
VVIGFAISQQKKDVRMLRFIQEVNTTTRSCALWDLEEDTEYIVHVQAISIQGQSPASEPV
LFKTPREAEKMASKNKDEVTMKEMGRNQQLRTGEVLIIVVVLFMWAGVIALFCRQYDIIK
DNEPNNNKEKTKSASETSTPEHQGGGLLRSKI
Function [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue.
Tissue Specificity Widely expressed, with highest levels in heart. Very low expression, if any, in colon, pancreas and spleen.

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Graves disease DISU4KOQ Definitive Altered Expression [1]
Thyroid gland papillary carcinoma DIS48YMM Definitive Altered Expression [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Arteriosclerosis DISK5QGC Strong Altered Expression [3]
Atherosclerosis DISMN9J3 Strong Altered Expression [3]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [4]
Dementia DISXL1WY Strong Biomarker [5]
Diabetic kidney disease DISJMWEY Strong Genetic Variation [6]
Fatty liver disease DIS485QZ Strong Genetic Variation [7]
Hyperlipidemia DIS61J3S Strong Altered Expression [3]
Myocardial fibrosis DISMOLYU Strong Therapeutic [8]
Neoplasm DISZKGEW Strong Altered Expression [9]
Non-alcoholic fatty liver disease DISDG1NL Strong Genetic Variation [7]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [10]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [11]
Obesity DIS47Y1K Strong Altered Expression [12]
Cardiovascular disease DIS2IQDX moderate Biomarker [13]
Ewing sarcoma DISQYLV3 moderate Biomarker [14]
Hepatocellular carcinoma DIS0J828 moderate Altered Expression [15]
High blood pressure DISY2OHH moderate Biomarker [16]
Kidney cancer DISBIPKM moderate Biomarker [17]
Metabolic disorder DIS71G5H moderate Biomarker [13]
Renal carcinoma DISER9XT moderate Biomarker [17]
Renal cell carcinoma DISQZ2X8 moderate Biomarker [17]
Rhabdomyosarcoma DISNR7MS moderate Biomarker [14]
Type-1/2 diabetes DISIUHAP moderate Biomarker [13]
Cardiomyopathy DISUPZRG Disputed Biomarker [18]
Advanced cancer DISAT1Z9 Limited Altered Expression [11]
Chronic kidney disease DISW82R7 Limited Altered Expression [19]
Chronic renal failure DISGG7K6 Limited Altered Expression [19]
End-stage renal disease DISXA7GG Limited Altered Expression [19]
Neuroblastoma DISVZBI4 Limited Altered Expression [20]
Non-alcoholic steatohepatitis DIST4788 Limited Genetic Variation [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [22]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [23]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [24]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [25]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [26]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [27]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [26]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [28]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [29]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Fibronectin type III domain-containing protein 5 (FNDC5). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Fibronectin type III domain-containing protein 5 (FNDC5). [30]
------------------------------------------------------------------------------------

References

1 The association between irisin and muscle metabolism in different thyroid disorders.Clin Endocrinol (Oxf). 2018 Mar;88(3):460-467. doi: 10.1111/cen.13527. Epub 2017 Dec 20.
2 Mechanistic complexities of bone loss in Alzheimer's disease: a review.Connect Tissue Res. 2020 Jan;61(1):4-18. doi: 10.1080/03008207.2019.1624734. Epub 2019 Jun 11.
3 Irisin Is Controlled by Farnesoid X Receptor and Regulates Cholesterol Homeostasis.Front Pharmacol. 2019 May 28;10:548. doi: 10.3389/fphar.2019.00548. eCollection 2019.
4 Serum and Adipose Tissue mRNA Levels of ATF3 and FNDC5/Irisin in Colorectal Cancer Patients With or Without Obesity.Front Physiol. 2018 Sep 10;9:1125. doi: 10.3389/fphys.2018.01125. eCollection 2018.
5 Are the neuroprotective effects of exercise training systemically mediated?.Prog Cardiovasc Dis. 2019 Mar-Apr;62(2):94-101. doi: 10.1016/j.pcad.2019.02.003. Epub 2019 Feb 22.
6 Association of irisin and FNDC5 rs16835198 G>T gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy. An Egyptian pilot study.Gene. 2017 Aug 30;626:26-31. doi: 10.1016/j.gene.2017.05.010. Epub 2017 May 4.
7 A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3'UTR.J Hepatol. 2019 Mar;70(3):494-500. doi: 10.1016/j.jhep.2018.10.021. Epub 2018 Oct 31.
8 Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/ TGF1/Smad2/3 signaling axis.Chem Biol Interact. 2019 Apr 1;302:11-21. doi: 10.1016/j.cbi.2019.01.031. Epub 2019 Jan 29.
9 Investigation of the expression of irisin and some cachectic factors in mice with experimentally induced gastric cancer.QJM. 2016 Dec;109(12):785-790. doi: 10.1093/qjmed/hcw074. Epub 2016 Jun 1.
10 Association between Irisin, hs-CRP, and Metabolic Status in Children and Adolescents with Type 2 Diabetes Mellitus.Mediators Inflamm. 2019 Mar 20;2019:6737318. doi: 10.1155/2019/6737318. eCollection 2019.
11 Expression of Irisin/FNDC5 in Cancer Cells and Stromal Fibroblasts of Non-small Cell Lung Cancer.Cancers (Basel). 2019 Oct 11;11(10):1538. doi: 10.3390/cancers11101538.
12 Obesity caused by a high-fat diet regulates the Sirt1/PGC-1/FNDC5/BDNF pathway to exacerbate isoflurane-induced postoperative cognitive dysfunction in older mice.Nutr Neurosci. 2020 Dec;23(12):971-982. doi: 10.1080/1028415X.2019.1581460. Epub 2019 Feb 22.
13 FNDC5: A novel player in metabolism and metabolic syndrome.Biochimie. 2019 Mar;158:111-116. doi: 10.1016/j.biochi.2019.01.001. Epub 2019 Jan 3.
14 Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas.PLoS One. 2014 Jul 15;9(7):e102483. doi: 10.1371/journal.pone.0102483. eCollection 2014.
15 Increased FNDC5/Irisin expression in human hepatocellular carcinoma.Peptides. 2017 Feb;88:62-66. doi: 10.1016/j.peptides.2016.12.014. Epub 2016 Dec 21.
16 Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats.J Hypertens. 2018 May;36(5):1104-1114. doi: 10.1097/HJH.0000000000001654.
17 The Diagnostic Value of FNDC5/Irisin in Renal Cell Cancer.Int Braz J Urol. 2018 Jul-Aug;44(4):734-739. doi: 10.1590/S1677-5538.IBJU.2017.0404.
18 FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT.Cell Death Differ. 2020 Feb;27(2):540-555. doi: 10.1038/s41418-019-0372-z. Epub 2019 Jun 17.
19 Urotensin II Induces Mice Skeletal Muscle Atrophy Associated with Enhanced Autophagy and Inhibited Irisin Precursor (Fibronectin Type III Domain Containing 5) Expression in Chronic Renal Failure.Kidney Blood Press Res. 2019;44(4):479-495. doi: 10.1159/000499880. Epub 2019 Jun 25.
20 PGC-1 or FNDC5 Is Involved in Modulating the Effects of A(1-42) Oligomers on Suppressing the Expression of BDNF, a Beneficial Factor for Inhibiting Neuronal Apoptosis, A Deposition and Cognitive Decline of APP/PS1 Tg Mice.Front Aging Neurosci. 2017 Mar 21;9:65. doi: 10.3389/fnagi.2017.00065. eCollection 2017.
21 Fibronectin Type III Domain-Containing Protein 5 rs3480 A>G Polymorphism, Irisin, and Liver Fibrosis in Patients With Nonalcoholic Fatty Liver Disease.J Clin Endocrinol Metab. 2017 Aug 1;102(8):2660-2669. doi: 10.1210/jc.2017-00056.
22 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
23 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
24 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
25 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
26 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
27 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
28 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
29 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
30 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.