General Information of Drug Off-Target (DOT) (ID: OT6CP234)

DOT Name Glutamate--cysteine ligase regulatory subunit (GCLM)
Synonyms GCS light chain; Gamma-ECS regulatory subunit; Gamma-glutamylcysteine synthetase regulatory subunit; Glutamate--cysteine ligase modifier subunit
Gene Name GCLM
UniProt ID
GSH0_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00248
Sequence
MGTDSRAAKALLARARTLHLQTGNLLNWGRLRKKCPSTHSEELHDCIQKTLNEWSSQINP
DLVREFPDVLECTVSHAVEKINPDEREEMKVSAKLFIVESNSSSSTRSAVDMACSVLGVA
QLDSVIIASPPIEDGVNLSLEHLQPYWEELENLVQSKKIVAIGTSDLDKTQLEQLYQWAQ
VKPNSNQVNLASCCVMPPDLTAFAKQFDIQLLTHNDPKELLSEASFQEALQESIPDIQAH
EWVPLWLLRYSVIVKSRGIIKSKGYILQAKRRGS
Tissue Specificity In all tissues examined. Highest levels in skeletal muscle.
KEGG Pathway
Cysteine and methionine metabolism (hsa00270 )
Glutathione metabolism (hsa00480 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Ferroptosis (hsa04216 )
Reactome Pathway
Defective GCLC causes HAGGSD (R-HSA-5578999 )
NFE2L2 regulating anti-oxidant/detoxification enzymes (R-HSA-9818027 )
Glutathione synthesis and recycling (R-HSA-174403 )
BioCyc Pathway
MetaCyc:ENSG00000023909-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Glutamate--cysteine ligase regulatory subunit (GCLM) affects the response to substance of Fluorouracil. [69]
Chlorothiazide DMLHESP Approved Glutamate--cysteine ligase regulatory subunit (GCLM) increases the Metabolic disorder ADR of Chlorothiazide. [70]
Artesunate DMR27C8 Approved Glutamate--cysteine ligase regulatory subunit (GCLM) decreases the response to substance of Artesunate. [71]
Acetylcholine DMDF79Z Approved Glutamate--cysteine ligase regulatory subunit (GCLM) affects the response to substance of Acetylcholine. [73]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Glutathione DMAHMT9 Approved Glutamate--cysteine ligase regulatory subunit (GCLM) increases the abundance of Glutathione. [72]
------------------------------------------------------------------------------------
100 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [7]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [13]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [14]
Menadione DMSJDTY Approved Menadione increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [15]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [16]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [17]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [18]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [19]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [20]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [21]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [22]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [13]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [24]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [25]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [25]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [25]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [25]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [24]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [26]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [26]
Lindane DMB8CNL Approved Lindane increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [27]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [28]
Chenodiol DMQ8JIK Approved Chenodiol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [29]
Ampicillin DMHWE7P Approved Ampicillin decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [30]
Isoniazid DM5JVS3 Approved Isoniazid decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [31]
Clavulanate DM2FGRT Approved Clavulanate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [32]
Nilotinib DM7HXWT Approved Nilotinib increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [33]
Benzoic acid DMKB9FI Approved Benzoic acid increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
Naproxen DMZ5RGV Approved Naproxen increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [24]
Ketoprofen DMRKXPT Approved Ketoprofen increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [24]
Mercaptopurine DMTM2IK Approved Mercaptopurine increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [22]
Penicillin V DMKVOYF Approved Penicillin V increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [34]
Suprofen DMKXJZ7 Approved Suprofen increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [24]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [35]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [36]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [37]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [38]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [38]
Benzylpenicillin DMS9503 Phase 3 Benzylpenicillin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [34]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [39]
Phenol DM1QSM3 Phase 2/3 Phenol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [27]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [40]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [41]
Disulfiram DMCL2OK Phase 2 Trial Disulfiram increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [42]
LY294002 DMY1AFS Phase 1 LY294002 decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [28]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [43]
Eugenol DM7US1H Patented Eugenol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
T83193 DMHO29Y Patented T83193 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [44]
Undecylenic acid derivative 1 DMLJ2HE Patented Undecylenic acid derivative 1 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [20]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [45]
Celastrol DMWQIJX Preclinical Celastrol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [46]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [47]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [48]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [16]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [38]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [49]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [50]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [51]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [52]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [44]
acrolein DMAMCSR Investigative acrolein increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [49]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [53]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid affects the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [54]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [55]
2-tert-butylbenzene-1,4-diol DMNXI1E Investigative 2-tert-butylbenzene-1,4-diol decreases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [38]
Paraoxon DMN4ZKC Investigative Paraoxon increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [56]
DM9CEI5 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [29]
Benzoquinone DMNBA0G Investigative Benzoquinone increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [57]
1,6-hexamethylene diisocyanate DMLB3RT Investigative 1,6-hexamethylene diisocyanate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [49]
Chlorogenic acid DM2Y3P4 Investigative Chlorogenic acid increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [58]
Protoporphyrin IX DMWYE7A Investigative Protoporphyrin IX increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [45]
NSC-1771 DMNXDGQ Investigative NSC-1771 increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [59]
Linoleic acid DMDGPY9 Investigative Linoleic acid increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [60]
2,6-Dihydroanthra/1,9-Cd/Pyrazol-6-One DMDN12L Investigative 2,6-Dihydroanthra/1,9-Cd/Pyrazol-6-One decreases the activity of Glutamate--cysteine ligase regulatory subunit (GCLM). [61]
methyl salicylate DMKCG8H Investigative methyl salicylate increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
DEMETHOXYCURCUMIN DMO5UGV Investigative DEMETHOXYCURCUMIN increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [62]
Plumbagin DM9BS50 Investigative Plumbagin increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [63]
2-Propanol, Isopropanol DML5O0H Investigative 2-Propanol, Isopropanol increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [23]
THIOCTIC ACID DMNFCXW Investigative THIOCTIC ACID increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [64]
BADGE DMCK5DG Investigative BADGE increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [20]
citral DM53ZGY Investigative citral increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [20]
2-chloro-5-nitro-N-phenylbenzamide DMUGQIV Investigative 2-chloro-5-nitro-N-phenylbenzamide increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [65]
CHALCONE DM16QTM Investigative CHALCONE increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [66]
Hydroxybenzo(a)pyrene DM9H5EN Investigative Hydroxybenzo(a)pyrene increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [67]
HOMOERIODICTYOL DM1SDN8 Investigative HOMOERIODICTYOL increases the expression of Glutamate--cysteine ligase regulatory subunit (GCLM). [68]
------------------------------------------------------------------------------------
⏷ Show the Full List of 100 Drug(s)

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010 Jan 31;268(1-2):31-9.
9 Essential role of Nrf2 in keratinocyte protection from UVA by quercetin. Biochem Biophys Res Commun. 2009 Sep 11;387(1):109-14. doi: 10.1016/j.bbrc.2009.06.136. Epub 2009 Jul 1.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
12 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
13 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
14 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
15 Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002 Nov 1;62(21):6246-54.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
18 Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020 Jan;28:101321. doi: 10.1016/j.redox.2019.101321. Epub 2019 Sep 5.
19 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
20 An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. Toxicol In Vitro. 2017 Apr;40:11-25. doi: 10.1016/j.tiv.2016.12.005. Epub 2016 Dec 10.
21 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
22 Petit E, Langouet S, Akhdar H, Nicolas-Nicolaz C, Guillouzo A, Morel F. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicol In Vitro. 2008;22(3):632-642. [PMID: 18222062]
23 Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci. 2010 Sep;117(1):81-9.
24 Redox-sensitive interaction between KIAA0132 and Nrf2 mediates indomethacin-induced expression of gamma-glutamylcysteine synthetase. Free Radic Biol Med. 2002 Apr 1;32(7):650-62. doi: 10.1016/s0891-5849(02)00755-4.
25 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
26 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
27 Oxidative stress mechanisms do not discriminate between genotoxic and nongenotoxic liver carcinogens. Chem Res Toxicol. 2015 Aug 17;28(8):1636-46.
28 Ursodeoxycholic acid induces glutathione synthesis through activation of PI3K/Akt pathway in HepG2 cells. Biochem Pharmacol. 2009 Mar 1;77(5):858-66. doi: 10.1016/j.bcp.2008.11.012. Epub 2008 Nov 25.
29 Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress. Mol Pharmacol. 2007 Nov;72(5):1380-90. doi: 10.1124/mol.107.039370. Epub 2007 Aug 27.
30 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
31 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
32 Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol. 2021 Dec;158:112664. doi: 10.1016/j.fct.2021.112664. Epub 2021 Nov 9.
33 Endoplasmic reticulum stress-mediated apoptosis in imatinib-resistant leukemic K562-r cells triggered by AMN107 combined with arsenic trioxide. Exp Biol Med (Maywood). 2013 Aug 1;238(8):932-42. doi: 10.1177/1535370213492689. Epub 2013 Jul 24.
34 Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte-derived dendritic cells. Toxicol Appl Pharmacol. 2012 Aug 1;262(3):283-92.
35 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
36 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
37 Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol. 2013 Nov 1;272(3):726-35.
38 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
39 Capturing time-dependent activation of genes and stress-response pathways using transcriptomics in iPSC-derived renal proximal tubule cells. Cell Biol Toxicol. 2023 Aug;39(4):1773-1793. doi: 10.1007/s10565-022-09783-5. Epub 2022 Dec 31.
40 Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol. 2010 Jan-Feb;24(1):10-20.
41 Nrf2 expression and activity in human T lymphocytes: stimulation by T cell receptor activation and priming by inorganic arsenic and tert-butylhydroquinone. Free Radic Biol Med. 2014 Jun;71:133-145. doi: 10.1016/j.freeradbiomed.2014.03.006. Epub 2014 Mar 13.
42 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
43 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
44 Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat Res. 2007 Mar 1;616(1-2):60-9. doi: 10.1016/j.mrfmmm.2006.11.022. Epub 2006 Dec 18.
45 Differential effects of arsenic species on Nrf2 and Bach1 nuclear localization in cultured hepatocytes. Toxicol Appl Pharmacol. 2021 Feb 15;413:115404. doi: 10.1016/j.taap.2021.115404. Epub 2021 Jan 9.
46 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
47 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
48 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
49 Gene expressions changes in bronchial epithelial cells: markers for respiratory sensitizers and exploration of the NRF2 pathway. Toxicol In Vitro. 2014 Mar;28(2):209-17.
50 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
51 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.
52 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
53 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
54 Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol Lett. 2012 Jul 7;212(1):18-28. doi: 10.1016/j.toxlet.2012.04.013. Epub 2012 May 1.
55 The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol. 2015 Dec;86:191-201.
56 Genomic and phenotypic alterations of the neuronal-like cells derived from human embryonal carcinoma stem cells (NT2) caused by exposure to organophosphorus compounds paraoxon and mipafox. Int J Mol Sci. 2014 Jan 9;15(1):905-26. doi: 10.3390/ijms15010905.
57 Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol In Vitro. 2011 Mar;25(2):521-9.
58 Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol Sci. 2018 Mar 1;162(1):99-112.
59 Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro. 2013 Dec;27(8):2213-24. doi: 10.1016/j.tiv.2013.08.007. Epub 2013 Aug 30.
60 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol Appl Pharmacol. 2016 Apr 1;296:1-9.
61 Pharmacologic inhibitors of extracellular signal-regulated kinase (ERKs) and c-Jun NH(2)-terminal kinase (JNK) decrease glutathione content and sensitize human promonocytic leukemia cells to arsenic trioxide-induced apoptosis. J Cell Physiol. 2006 Dec;209(3):1006-15. doi: 10.1002/jcp.20806.
62 Induction of antioxidant enzymes by curcumin and its analogues in human islets: implications in transplantation. Pancreas. 2009 May;38(4):454-60.
63 Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem. 2010 Mar;112(5):1316-26.
64 (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4302-10. doi: 10.1167/iovs.04-1098.
65 Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) by combining a chemical library screen with computer-based virtual screening. J Biol Chem. 2012 Sep 21;287(39):33001-13.
66 Artocarmitin B enhances intracellular antioxidant capacity via activation of Nrf2 signaling pathway in human lung epithelial cells. Chem Biol Interact. 2019 Sep 1;310:108741. doi: 10.1016/j.cbi.2019.108741. Epub 2019 Jul 9.
67 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
68 Homoeriodictyol protects human endothelial cells against oxidative insults through activation of Nrf2 and inhibition of mitochondrial dysfunction. Vascul Pharmacol. 2018 Oct;109:72-82. doi: 10.1016/j.vph.2018.06.007. Epub 2018 Jun 11.
69 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
70 Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 2014 Feb;14(1):35-40. doi: 10.1038/tpj.2013.3. Epub 2013 Feb 12.
71 Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate. In Vivo. 2005 Jan-Feb;19(1):225-32.
72 Genetic variants in glutamate cysteine ligase confer protection against type 2 diabetes. Mol Biol Rep. 2020 Aug;47(8):5793-5805. doi: 10.1007/s11033-020-05647-5. Epub 2020 Jul 26.
73 Polymorphism in glutamate-cysteine ligase modifier subunit gene is associated with impairment of nitric oxide-mediated coronary vasomotor function. Circulation. 2003 Sep 23;108(12):1425-7. doi: 10.1161/01.CIR.0000091255.63645.98. Epub 2003 Sep 15.