General Information of Drug Off-Target (DOT) (ID: OTMRT2TS)

DOT Name Neuronal PAS domain-containing protein 2 (NPAS2)
Synonyms Neuronal PAS2; Basic-helix-loop-helix-PAS protein MOP4; Class E basic helix-loop-helix protein 9; bHLHe9; Member of PAS protein 4; PAS domain-containing protein 4
Gene Name NPAS2
Related Disease
Bipolar disorder ( )
Schizoaffective disorder ( )
Acute myelogenous leukaemia ( )
Adenocarcinoma ( )
Autism ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Carcinoma of esophagus ( )
Chronic fatigue syndrome ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Creutzfeldt Jacob disease ( )
Depression ( )
Drug dependence ( )
Esophageal cancer ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
Her2-receptor negative breast cancer ( )
HER2/NEU overexpressing breast cancer ( )
High blood pressure ( )
Lung cancer ( )
Lung carcinoma ( )
Lymphoma, non-Hodgkin, familial ( )
Major depressive disorder ( )
Mental disorder ( )
Mood disorder ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Non-hodgkin lymphoma ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Parkinson disease ( )
Prostate cancer ( )
Prostate carcinoma ( )
Rheumatoid arthritis ( )
Vitamin D deficiency ( )
Kidney cancer ( )
Renal carcinoma ( )
Small lymphocytic lymphoma ( )
Advanced cancer ( )
Anxiety ( )
Anxiety disorder ( )
Leiomyosarcoma ( )
Malignant soft tissue neoplasm ( )
Malignant tumor of nasopharynx ( )
Melanoma ( )
Nasopharyngeal carcinoma ( )
Sarcoma ( )
Schizophrenia ( )
UniProt ID
NPAS2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00010 ; PF00989 ; PF14598
Sequence
MDEDEKDRAKRASRNKSEKKRRDQFNVLIKELSSMLPGNTRKMDKTTVLEKVIGFLQKHN
EVSAQTEICDIQQDWKPSFLSNEEFTQLMLEALDGFIIAVTTDGSIIYVSDSITPLLGHL
PSDVMDQNLLNFLPEQEHSEVYKILSSHMLVTDSPSPEYLKSDSDLEFYCHLLRGSLNPK
EFPTYEYIKFVGNFRSYNNVPSPSCNGFDNTLSRPCRVPLGKEVCFIATVRLATPQFLKE
MCIVDEPLEEFTSRHSLEWKFLFLDHRAPPIIGYLPFEVLGTSGYDYYHIDDLELLARCH
QHLMQFGKGKSCCYRFLTKGQQWIWLQTHYYITYHQWNSKPEFIVCTHSVVSYADVRVER
RQELALEDPPSEALHSSALKDKGSSLEPRQHFNTLDVGASGLNTSHSPSASSRSSHKSSH
TAMSEPTSTPTKLMAEASTPALPRSATLPQELPVPGLSQAATMPAPLPSPSSCDLTQQLL
PQTVLQSTPAPMAQFSAQFSMFQTIKDQLEQRTRILQANIRWQQEELHKIQEQLCLVQDS
NVQMFLQQPAVSLSFSSTQRPEAQQQLQQRSAAVTQPQLGAGPQLPGQISSAQVTSQHLL
RESSVISTQGPKPMRSSQLMQSSGRSGSSLVSPFSSATAALPPSLNLTTPASTSQDASQC
QPSPDFSHDRQLRLLLSQPIQPMMPGSCDARQPSEVSRTGRQVKYAQSQTVFQNPDAHPA
NSSSAPMPVLLMGQAVLHPSFPASQPSPLQPAQARQQPPQHYLQVQAPTSLHSEQQDSLL
LSTYSQQPGTLGYPQPPPAQPQPLRPPRRVSSLSESSGLQQPPR
Function
Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. NPAS2 plays an important role in sleep homeostasis and in maintaining circadian behaviors in normal light/dark and feeding conditions and in the effective synchronization of feeding behavior with scheduled food availability. Regulates the gene transcription of key metabolic pathways in the liver and is involved in DNA damage response by regulating several cell cycle and DNA repair genes. Controls the circadian rhythm of NR0B2 expression by binding rhythmically to its promoter. Mediates the diurnal variation in the expression of GABARA1 receptor in the brain and contributes to the regulation of anxiety-like behaviors and GABAergic neurotransmission in the ventral striatum.
KEGG Pathway
Circadian rhythm (hsa04710 )
Reactome Pathway
PPARA activates gene expression (R-HSA-1989781 )
Circadian Clock (R-HSA-400253 )
Heme signaling (R-HSA-9707616 )
BMAL1 (R-HSA-1368108 )

Molecular Interaction Atlas (MIA) of This DOT

50 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bipolar disorder DISAM7J2 Definitive Biomarker [1]
Schizoaffective disorder DISLBW6B Definitive Biomarker [2]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [3]
Adenocarcinoma DIS3IHTY Strong Altered Expression [4]
Autism DISV4V1Z Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Biomarker [6]
Breast carcinoma DIS2UE88 Strong Biomarker [6]
Breast neoplasm DISNGJLM Strong Genetic Variation [7]
Carcinoma of esophagus DISS6G4D Strong Biomarker [8]
Chronic fatigue syndrome DIS34WJ5 Strong Genetic Variation [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Colorectal neoplasm DISR1UCN Strong Altered Expression [11]
Creutzfeldt Jacob disease DISCB6RX Strong Genetic Variation [12]
Depression DIS3XJ69 Strong Biomarker [13]
Drug dependence DIS9IXRC Strong Biomarker [14]
Esophageal cancer DISGB2VN Strong Biomarker [8]
Glioblastoma multiforme DISK8246 Strong Altered Expression [15]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [16]
Her2-receptor negative breast cancer DISS605N Strong Biomarker [17]
HER2/NEU overexpressing breast cancer DISYKID5 Strong Biomarker [17]
High blood pressure DISY2OHH Strong Biomarker [18]
Lung cancer DISCM4YA Strong Biomarker [6]
Lung carcinoma DISTR26C Strong Biomarker [6]
Lymphoma, non-Hodgkin, familial DISCXYIZ Strong Biomarker [10]
Major depressive disorder DIS4CL3X Strong Biomarker [19]
Mental disorder DIS3J5R8 Strong Biomarker [14]
Mood disorder DISLVMWO Strong Genetic Variation [19]
Neoplasm DISZKGEW Strong Altered Expression [20]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [8]
Non-hodgkin lymphoma DISS2Y8A Strong Biomarker [10]
Non-small-cell lung cancer DIS5Y6R9 Strong Genetic Variation [21]
Osteoarthritis DIS05URM Strong Altered Expression [22]
Parkinson disease DISQVHKL Strong Biomarker [23]
Prostate cancer DISF190Y Strong Genetic Variation [24]
Prostate carcinoma DISMJPLE Strong Genetic Variation [24]
Rheumatoid arthritis DISTSB4J Strong Altered Expression [25]
Vitamin D deficiency DISAWKYI Strong Altered Expression [26]
Kidney cancer DISBIPKM moderate Biomarker [27]
Renal carcinoma DISER9XT moderate Biomarker [27]
Small lymphocytic lymphoma DIS30POX moderate Genetic Variation [28]
Advanced cancer DISAT1Z9 Limited Biomarker [29]
Anxiety DISIJDBA Limited Biomarker [30]
Anxiety disorder DISBI2BT Limited Biomarker [30]
Leiomyosarcoma DIS6COXM Limited Genetic Variation [31]
Malignant soft tissue neoplasm DISTC6NO Limited Genetic Variation [31]
Malignant tumor of nasopharynx DISTGIGF Limited Biomarker [32]
Melanoma DIS1RRCY Limited Genetic Variation [33]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [32]
Sarcoma DISZDG3U Limited Genetic Variation [31]
Schizophrenia DISSRV2N Limited Genetic Variation [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 50 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
DTI-015 DMXZRW0 Approved Neuronal PAS domain-containing protein 2 (NPAS2) affects the response to substance of DTI-015. [45]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Neuronal PAS domain-containing protein 2 (NPAS2). [35]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Neuronal PAS domain-containing protein 2 (NPAS2). [38]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Neuronal PAS domain-containing protein 2 (NPAS2). [42]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Neuronal PAS domain-containing protein 2 (NPAS2). [38]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [36]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [37]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [39]
Progesterone DMUY35B Approved Progesterone increases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [40]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [41]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [44]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID increases the expression of Neuronal PAS domain-containing protein 2 (NPAS2). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Genetic association study of circadian genes with seasonal pattern in bipolar disorders.Sci Rep. 2015 May 19;5:10232. doi: 10.1038/srep10232.
2 Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia.Bipolar Disord. 2009 Nov;11(7):701-10. doi: 10.1111/j.1399-5618.2009.00756.x.
3 NPAS2 regulates proliferation of acute myeloid leukemia cells via CDC25A-mediated cell cycle progression and apoptosis.J Cell Biochem. 2019 May;120(5):8731-8741. doi: 10.1002/jcb.28160. Epub 2018 Dec 9.
4 Research on circadian clock genes in non-small-cell lung carcinoma.Chronobiol Int. 2019 Jun;36(6):739-750. doi: 10.1080/07420528.2018.1509080. Epub 2019 Apr 24.
5 Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis.Mol Psychiatry. 2007 Jun;12(6):581-92. doi: 10.1038/sj.mp.4001953. Epub 2007 Jan 30.
6 Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.BMC Med. 2018 Feb 19;16(1):20. doi: 10.1186/s12916-018-1010-1.
7 Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk.Breast Cancer Res Treat. 2008 Feb;107(3):421-5. doi: 10.1007/s10549-007-9565-0. Epub 2007 Apr 24.
8 A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells.Oncol Lett. 2018 Apr;15(4):4185-4192. doi: 10.3892/ol.2018.7825. Epub 2018 Jan 19.
9 Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome.Neuropsychobiology. 2011;64(4):183-94. doi: 10.1159/000326692. Epub 2011 Sep 9.
10 Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer.Biochem Biophys Res Commun. 2014 Jul 25;450(2):1058-62. doi: 10.1016/j.bbrc.2014.06.104. Epub 2014 Jun 27.
11 The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response.Mol Cancer Res. 2008 Sep;6(9):1461-8. doi: 10.1158/1541-7786.MCR-07-2094.
12 Genetics of prion diseases.Curr Opin Genet Dev. 2013 Jun;23(3):345-51. doi: 10.1016/j.gde.2013.02.012. Epub 2013 Mar 19.
13 Clock gene variants in mood and anxiety disorders.J Neural Transm (Vienna). 2012 Oct;119(10):1133-45. doi: 10.1007/s00702-012-0810-2. Epub 2012 Apr 27.
14 Cell-Type-Specific Regulation of Nucleus Accumbens Synaptic Plasticity and Cocaine Reward Sensitivity by the Circadian Protein, NPAS2.J Neurosci. 2019 Jun 12;39(24):4657-4667. doi: 10.1523/JNEUROSCI.2233-18.2019. Epub 2019 Apr 8.
15 Circadian pathway genes in relation to glioma risk and outcome.Cancer Causes Control. 2014 Jan;25(1):25-32. doi: 10.1007/s10552-013-0305-y. Epub 2013 Oct 18.
16 Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells.Cancer Lett. 2020 Jan 28;469:498-509. doi: 10.1016/j.canlet.2019.11.024. Epub 2019 Nov 22.
17 Loss of circadian clock gene expression is associated with tumor progression in breast cancer.Cell Cycle. 2014;13(20):3282-91. doi: 10.4161/15384101.2014.954454.
18 Predictive response-relevant clustering of expression data provides insights into disease processes.Nucleic Acids Res. 2010 Nov;38(20):6831-40. doi: 10.1093/nar/gkq550. Epub 2010 Jun 22.
19 Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder.Neuropsychopharmacology. 2010 May;35(6):1279-89. doi: 10.1038/npp.2009.230. Epub 2010 Jan 13.
20 Altered circadian genes expression in breast cancer tissue according to the clinical characteristics.PLoS One. 2018 Jun 29;13(6):e0199622. doi: 10.1371/journal.pone.0199622. eCollection 2018.
21 Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.Oncotarget. 2017 Apr 4;8(14):23978-23995. doi: 10.18632/oncotarget.15074.
22 Hylan G-F 20 attenuates posttraumatic osteoarthritis progression: Association with upregulated expression of the circardian gene NPAS2.Life Sci. 2015 Nov 15;141:20-4. doi: 10.1016/j.lfs.2015.09.007. Epub 2015 Sep 24.
23 Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients.Neurosci Lett. 2018 Mar 6;668:115-119. doi: 10.1016/j.neulet.2018.01.027. Epub 2018 Jan 17.
24 Genetic variants in the circadian rhythm pathway as indicators of prostate cancer progression.Cancer Cell Int. 2019 Apr 5;19:87. doi: 10.1186/s12935-019-0811-4. eCollection 2019.
25 Differentially Expressed in Chondrocytes 2 (DEC2) Increases the Expression of IL-1 and Is Abundantly Present in Synovial Membrane in Rheumatoid Arthritis.PLoS One. 2015 Dec 28;10(12):e0145279. doi: 10.1371/journal.pone.0145279. eCollection 2015.
26 Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.PLoS One. 2017 Aug 17;12(8):e0183359. doi: 10.1371/journal.pone.0183359. eCollection 2017.
27 Research on circadian clock genes in common abdominal malignant tumors.Chronobiol Int. 2019 Jul;36(7):906-918. doi: 10.1080/07420528.2018.1477792. Epub 2019 Apr 24.
28 Lack of association of the NPAS2 gene Ala394Thr polymorphism (rs2305160:G>A) with risk of chronic lymphocytic leukemia.Asian Pac J Cancer Prev. 2014;15(17):7169-74. doi: 10.7314/apjcp.2014.15.17.7169.
29 Functional polymorphisms in circadian positive feedback loop genes predict postsurgical prognosis of gastric cancer.Cancer Med. 2019 Apr;8(4):1919-1929. doi: 10.1002/cam4.2050. Epub 2019 Mar 7.
30 NPAS2 Regulation of Anxiety-Like Behavior and GABAA Receptors.Front Mol Neurosci. 2017 Nov 3;10:360. doi: 10.3389/fnmol.2017.00360. eCollection 2017.
31 Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis.J Transl Med. 2018 Dec 5;16(1):338. doi: 10.1186/s12967-018-1715-0.
32 MiR-20a-5p promotes radio-resistance by targeting NPAS2 in nasopharyngeal cancer cells.Oncotarget. 2017 Nov 11;8(62):105873-105881. doi: 10.18632/oncotarget.22411. eCollection 2017 Dec 1.
33 A polymorphic GGC repeat in the NPAS2 gene and its association with melanoma.Exp Biol Med (Maywood). 2017 Sep;242(15):1553-1558. doi: 10.1177/1535370217724093. Epub 2017 Aug 11.
34 Association between restless legs syndrome and CLOCK and NPAS2 gene polymorphisms in schizophrenia.Chronobiol Int. 2014 Aug;31(7):838-44. doi: 10.3109/07420528.2014.914034. Epub 2014 May 14.
35 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
36 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
39 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
40 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
41 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.
42 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
43 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
44 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
45 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.