General Information of Drug Off-Target (DOT) (ID: OTU6FSBF)

DOT Name Glycerophosphodiester phosphodiesterase 1 (GDE1)
Synonyms Glycerophosphoinositol glycerophosphodiesterase GDE1; EC 3.1.4.44; Lysophospholipase D GDE1; EC 3.1.4.-; Membrane-interacting protein of RGS16; RGS16-interacting membrane protein
Gene Name GDE1
Related Disease
Adult glioblastoma ( )
Adenocarcinoma ( )
Alzheimer disease ( )
Autoimmune disease ( )
B-cell neoplasm ( )
Bladder cancer ( )
Bone osteosarcoma ( )
Breast neoplasm ( )
Clear cell renal carcinoma ( )
Depression ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Major depressive disorder ( )
Malignant pleural mesothelioma ( )
Matthew-Wood syndrome ( )
Neuroblastoma ( )
Non-alcoholic fatty liver disease ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Osteosarcoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Plasma cell myeloma ( )
Prostate neoplasm ( )
Rheumatoid arthritis ( )
Small lymphocytic lymphoma ( )
Squamous cell carcinoma ( )
Stomach cancer ( )
Stroke ( )
Systemic lupus erythematosus ( )
Ulcerative colitis ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Congenital contractural arachnodactyly ( )
Type-1 diabetes ( )
leukaemia ( )
Leukemia ( )
Nasopharyngeal carcinoma ( )
Pancreatic cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Thyroid gland papillary carcinoma ( )
UniProt ID
GDE1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.4.-; 3.1.4.44
Pfam ID
PF03009
Sequence
MWLWEDQGGLLGPFSFLLLVLLLVTRSPVNACLLTGSLFVLLRVFSFEPVPSCRALQVLK
PRDRISAIAHRGGSHDAPENTLAAIRQAAKNGATGVELDIEFTSDGIPVLMHDNTVDRTT
DGTGRLCDLTFEQIRKLNPAANHRLRNDFPDEKIPTLREAVAECLNHNLTIFFDVKGHAH
KATEALKKMYMEFPQLYNNSVVCSFLPEVIYKMRQTDRDVITALTHRPWSLSHTGDGKPR
YDTFWKHFIFVMMDILLDWSMHNILWYLCGISAFLMQKDFVSPAYLKKWSAKGIQVVGWT
VNTFDEKSYYESHLGSSYITDSMVEDCEPHF
Function
Hydrolyzes the phosphodiester bond of glycerophosphodiesters such as glycerophosphoinositol (GroPIns) and glycerophosphoethanolamine (GroPEth), to yield a glycerol phosphate and an alcohol. Hydrolyzes glycerophospho-N-acylethanolamines to N-acylethanolamines in the brain and participates in bioactive N-acylethanolamine biosynthesis such as anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory), and N-oleoylethanolamine (an anorexic). In addition, has a lysophospholipase D activity by hydrolyzing N-acyl-lysoplasmenylethanolamine (N-acyl-lysoPlsEt) to N-acylethanolamine. However lysophospholipase D activity is lower than glycerophosphodiester phosphodiesterase activity. Has little or no activity towards glycerophosphocholine.
Tissue Specificity Widely expressed.
Reactome Pathway
Glycerophospholipid catabolism (R-HSA-6814848 )
BioCyc Pathway
MetaCyc:HS00157-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult glioblastoma DISVP4LU Definitive Altered Expression [1]
Adenocarcinoma DIS3IHTY Strong Altered Expression [2]
Alzheimer disease DISF8S70 Strong Altered Expression [3]
Autoimmune disease DISORMTM Strong Biomarker [4]
B-cell neoplasm DISVY326 Strong Altered Expression [5]
Bladder cancer DISUHNM0 Strong Altered Expression [6]
Bone osteosarcoma DIST1004 Strong Genetic Variation [7]
Breast neoplasm DISNGJLM Strong Biomarker [8]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [9]
Depression DIS3XJ69 Strong Biomarker [10]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [11]
Gastric cancer DISXGOUK Strong Biomarker [12]
Glioblastoma multiforme DISK8246 Strong Altered Expression [13]
Glioma DIS5RPEH Strong Biomarker [13]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [15]
Lung cancer DISCM4YA Strong Biomarker [16]
Lung carcinoma DISTR26C Strong Biomarker [16]
Major depressive disorder DIS4CL3X Strong Biomarker [10]
Malignant pleural mesothelioma DIST2R60 Strong Biomarker [17]
Matthew-Wood syndrome DISA7HR7 Strong Altered Expression [18]
Neuroblastoma DISVZBI4 Strong Biomarker [19]
Non-alcoholic fatty liver disease DISDG1NL Strong Altered Expression [20]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [21]
Osteoarthritis DIS05URM Strong Altered Expression [22]
Osteosarcoma DISLQ7E2 Strong Genetic Variation [7]
Ovarian cancer DISZJHAP Strong Biomarker [11]
Ovarian neoplasm DISEAFTY Strong Biomarker [11]
Plasma cell myeloma DIS0DFZ0 Strong Altered Expression [23]
Prostate neoplasm DISHDKGQ Strong Biomarker [24]
Rheumatoid arthritis DISTSB4J Strong Biomarker [25]
Small lymphocytic lymphoma DIS30POX Strong Genetic Variation [26]
Squamous cell carcinoma DISQVIFL Strong Altered Expression [27]
Stomach cancer DISKIJSX Strong Biomarker [28]
Stroke DISX6UHX Strong Biomarker [29]
Systemic lupus erythematosus DISI1SZ7 Strong Altered Expression [30]
Ulcerative colitis DIS8K27O Strong Biomarker [31]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [6]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [6]
Congenital contractural arachnodactyly DISOM1K7 moderate Altered Expression [32]
Type-1 diabetes DIS7HLUB Disputed Biomarker [33]
leukaemia DISS7D1V Limited Biomarker [34]
Leukemia DISNAKFL Limited Biomarker [34]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [35]
Pancreatic cancer DISJC981 Limited Biomarker [36]
Prostate cancer DISF190Y Limited Altered Expression [37]
Prostate carcinoma DISMJPLE Limited Altered Expression [37]
Thyroid gland papillary carcinoma DIS48YMM Limited Biomarker [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Glycerophosphodiester phosphodiesterase 1 (GDE1) decreases the response to substance of Arsenic trioxide. [47]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [39]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [40]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [41]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [42]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [43]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [44]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [45]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Glycerophosphodiester phosphodiesterase 1 (GDE1). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Differential expression of miR16 in glioblastoma and glioblastoma stem cells: their correlation with proliferation, differentiation, metastasis and prognosis.Oncogene. 2017 Oct 19;36(42):5861-5873. doi: 10.1038/onc.2017.182. Epub 2017 Jun 19.
2 Changes in plasma miR-9, miR-16, miR-205 and miR-486 levels after non-small cell lung cancer resection.Cell Oncol (Dordr). 2017 Oct;40(5):529-536. doi: 10.1007/s13402-017-0334-8. Epub 2017 Jun 20.
3 MiR-16 attenuates -amyloid-induced neurotoxicity through targeting -site amyloid precursor protein-cleaving enzyme 1 in an Alzheimer's disease cell model.Neuroreport. 2018 Nov 7;29(16):1365-1372. doi: 10.1097/WNR.0000000000001118.
4 The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review.Biomed Pharmacother. 2019 Apr;112:108583. doi: 10.1016/j.biopha.2019.01.044. Epub 2019 Feb 16.
5 Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication.J Virol. 2020 Jan 6;94(2):e01724-19. doi: 10.1128/JVI.01724-19. Print 2020 Jan 6.
6 Puerarin Inhibits Proliferation and Induces Apoptosis by Upregulation of miR-16 in Bladder Cancer Cell Line T24.Oncol Res. 2018 Sep 14;26(8):1227-1234. doi: 10.3727/096504018X15178736525106. Epub 2018 Feb 8.
7 MiR-16-1-3p and miR-16-2-3p possess strong tumor suppressive and antimetastatic properties in osteosarcoma.Int J Cancer. 2019 Dec 1;145(11):3052-3063. doi: 10.1002/ijc.32368. Epub 2019 May 9.
8 Suppressive effect of exogenous miR-16 and miR-34a on tumorigenesis of breast cancer cells.J Cell Biochem. 2019 Aug;120(8):13342-13353. doi: 10.1002/jcb.28608. Epub 2019 Mar 27.
9 New mechanistic insights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies.Biomed Pharmacother. 2019 Mar;111:821-834. doi: 10.1016/j.biopha.2018.12.099. Epub 2019 Jan 4.
10 Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202.J Res Med Sci. 2018 Aug 23;23:69. doi: 10.4103/jrms.JRMS_879_17. eCollection 2018.
11 MicroRNA-16 inhibits migration and invasion via regulation of the Wnt/-catenin signaling pathway in ovarian cancer.Oncol Lett. 2019 Mar;17(3):2631-2638. doi: 10.3892/ol.2019.9923. Epub 2019 Jan 14.
12 Oncogenic role of long non-coding RNA SNHG12 in gastric cancer cells by targeting miR-16.Exp Ther Med. 2019 Jul;18(1):199-208. doi: 10.3892/etm.2019.7526. Epub 2019 Apr 24.
13 MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy.Neuropathol Appl Neurobiol. 2019 Aug;45(5):441-458. doi: 10.1111/nan.12532. Epub 2019 Feb 19.
14 The potential regulatory role of miR16 to the interplay between interferon and transforming growth factor beta pathways through IRF3 and SMAD7 in hepatitis C virus infected patients.J Cell Biochem. 2019 Aug;120(8):12694-12701. doi: 10.1002/jcb.28537. Epub 2019 Mar 12.
15 Role of miR-16-5p in the proliferation and metastasis of hepatocellular carcinoma.Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):137-145. doi: 10.26355/eurrev_201901_16757.
16 The mechanism of miR-16-5p protection on LPS-induced A549 cell injury by targeting CXCR3.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1200-1206. doi: 10.1080/21691401.2019.1593998.
17 Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study.Lancet Oncol. 2017 Oct;18(10):1386-1396. doi: 10.1016/S1470-2045(17)30621-6. Epub 2017 Sep 1.
18 Functional Significance and Therapeutic Potential of miR-15a Mimic in Pancreatic Ductal Adenocarcinoma.Mol Ther Nucleic Acids. 2020 Mar 6;19:228-239. doi: 10.1016/j.omtn.2019.11.010. Epub 2019 Nov 20.
19 miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma.Mol Oncol. 2020 Jan;14(1):180-196. doi: 10.1002/1878-0261.12588. Epub 2019 Nov 29.
20 Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population.World J Gastroenterol. 2016 Nov 28;22(44):9844-9852. doi: 10.3748/wjg.v22.i44.9844.
21 Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcinogenic effect in non-small cell lung carcinoma via the modulation of miR-34a and miR-16.Biomater Sci. 2019 Oct 1;7(10):4325-4344. doi: 10.1039/c9bm00912d. Epub 2019 Aug 14.
22 LncRNA SNHG1 alleviates IL-1-induced osteoarthritis by inhibiting miR-16-5p-mediated p38 MAPK and NF-B signaling pathways.Biosci Rep. 2019 Sep 6;39(9):BSR20191523. doi: 10.1042/BSR20191523. Print 2019 Sep 30.
23 MiRNAs with prognostic significance in multiple myeloma: A systemic review and meta-analysis.Medicine (Baltimore). 2019 Aug;98(33):e16711. doi: 10.1097/MD.0000000000016711.
24 miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF- signaling pathway.Biomed Pharmacother. 2018 Aug;104:637-644. doi: 10.1016/j.biopha.2018.05.041. Epub 2018 May 25.
25 MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact.Autoimmun Rev. 2019 Nov;18(11):102391. doi: 10.1016/j.autrev.2019.102391. Epub 2019 Sep 11.
26 Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis.Curr Med Chem. 2020;27(2):282-297. doi: 10.2174/0929867326666190911114842.
27 Loss of miR-16 contributes to tumor progression by activation of tousled-like kinase 1 in oral squamous cell carcinoma.Cell Cycle. 2018;17(18):2284-2295. doi: 10.1080/15384101.2018.1526601. Epub 2018 Oct 9.
28 Novel circular RNA circNF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16.Endocr Relat Cancer. 2019 Mar;26(3):265-277. doi: 10.1530/ERC-18-0478.
29 Plasma miR-124-3p and miR-16 concentrations as prognostic markers in acute stroke.Clin Biochem. 2016 Jun;49(9):663-668. doi: 10.1016/j.clinbiochem.2016.02.016. Epub 2016 Mar 9.
30 B Cell-Related Circulating MicroRNAs With the Potential Value of Biomarkers in the Differential Diagnosis, and Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic Lupus Erythematosus.Front Immunol. 2018 Jun 29;9:1473. doi: 10.3389/fimmu.2018.01473. eCollection 2018.
31 Identification of suitable reference microRNA for qPCR analysis in pediatric inflammatory bowel disease.Physiol Genomics. 2019 May 1;51(5):169-175. doi: 10.1152/physiolgenomics.00126.2018. Epub 2019 Apr 12.
32 Unravelling the Diagnostic Dilemma: A MicroRNA Panel of Circulating MiR-16 and MiR-877 as A Diagnostic Classifier for Distal Bile Duct Tumors.Cancers (Basel). 2019 Aug 15;11(8):1181. doi: 10.3390/cancers11081181.
33 miR15a and miR16 in Chilean type 1 diabetes patients: possible association with apoptosis, inflammatory, or autoimmunity markers.J Endocrinol Invest. 2018 Jan 31. doi: 10.1007/s40618-017-0814-8. Online ahead of print.
34 MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential.J Cell Physiol. 2019 Jun;234(6):8465-8486. doi: 10.1002/jcp.27776. Epub 2018 Dec 4.
35 FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1.Oncogene. 2018 Nov;37(48):6243-6258. doi: 10.1038/s41388-018-0351-8. Epub 2018 Jul 16.
36 Interaction of Serum microRNAs and Serum Folate With the Susceptibility to Pancreatic Cancer.Pancreas. 2015 Jan;44(1):23-30. doi: 10.1097/MPA.0000000000000204.
37 microRNA-16-5p enhances radiosensitivity through modulating Cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells.J Cell Physiol. 2019 Aug;234(8):13182-13190. doi: 10.1002/jcp.27989. Epub 2018 Dec 10.
38 Long noncoding RNA small nucleolar RNA host gene 12 promotes papillary thyroid carcinoma cell growth and invasion by targeting miR-16-5p.Histol Histopathol. 2020 Feb;35(2):217-224. doi: 10.14670/HH-18-155. Epub 2019 Jul 29.
39 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
40 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
41 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
42 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
43 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
44 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
45 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
46 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
47 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.