General Information of Drug Off-Target (DOT) (ID: OTXF0B09)

DOT Name Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2)
Synonyms Eukaryotic translation initiation factor 2 subunit beta; eIF2-beta
Gene Name EIF2S2
Related Disease
Cognitive impairment ( )
Leishmaniasis ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Alzheimer disease ( )
Brain disease ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Cerebellar ataxia ( )
Chagas disease ( )
Colorectal carcinoma ( )
Diffuse systemic sclerosis ( )
Familial adenomatous polyposis ( )
Fatty liver disease ( )
Intellectual disability ( )
Liposarcoma ( )
Liver cirrhosis ( )
MEHMO syndrome ( )
Non-small-cell lung cancer ( )
Obesity ( )
Schizophrenia ( )
Scleroderma ( )
Systemic sclerosis ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Female hypogonadism ( )
Liver cancer ( )
Myotonic dystrophy type 2 ( )
Type-1/2 diabetes ( )
Wolcott-Rallison syndrome ( )
Melanoma ( )
Neoplasm ( )
Nervous system disease ( )
Parkinson disease ( )
UniProt ID
IF2B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6K71; 6K72; 6YBV; 6ZMW; 6ZP4; 7A09; 7D43; 7QP6; 8PPL
Pfam ID
PF01873
Sequence
MSGDEMIFDPTMSKKKKKKKKPFMLDEEGDTQTEETQPSETKEVEPEPTEDKDLEADEED
TRKKDASDDLDDLNFFNQKKKKKKTKKIFDIDEAEEGVKDLKIESDVQEPTEPEDDLDIM
LGNKKKKKKNVKFPDEDEILEKDEALEDEDNKKDDGISFSNQTGPAWAGSERDYTYEELL
NRVFNIMREKNPDMVAGEKRKFVMKPPQVVRVGTKKTSFVNFTDICKLLHRQPKHLLAFL
LAELGTSGSIDGNNQLVIKGRFQQKQIENVLRRYIKEYVTCHTCRSPDTILQKDTRLYFL
QCETCHSRCSVASIKTGFQAVTGKRAQLRAKAN
Function
Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B.
Reactome Pathway
PERK regulates gene expression (R-HSA-381042 )
ABC-family proteins mediated transport (R-HSA-382556 )
Translation initiation complex formation (R-HSA-72649 )
Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
Recycling of eIF2 (R-HSA-72731 )
Response of EIF2AK4 (GCN2) to amino acid deficiency (R-HSA-9633012 )
Response of EIF2AK1 (HRI) to heme deficiency (R-HSA-9648895 )
PKR-mediated signaling (R-HSA-9833482 )
L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827 )

Molecular Interaction Atlas (MIA) of This DOT

34 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cognitive impairment DISH2ERD Definitive Posttranslational Modification [1]
Leishmaniasis DISABTW7 Definitive Biomarker [2]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Altered Expression [4]
Alzheimer disease DISF8S70 Strong Biomarker [5]
Brain disease DIS6ZC3X Strong Genetic Variation [6]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Breast neoplasm DISNGJLM Strong Biomarker [8]
Cerebellar ataxia DIS9IRAV Strong Genetic Variation [9]
Chagas disease DIS8KNVF Strong Posttranslational Modification [10]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [11]
Diffuse systemic sclerosis DISYF5LP Strong Biomarker [12]
Familial adenomatous polyposis DISW53RE Strong Biomarker [13]
Fatty liver disease DIS485QZ Strong Genetic Variation [14]
Intellectual disability DISMBNXP Strong Biomarker [15]
Liposarcoma DIS8IZVM Strong Biomarker [16]
Liver cirrhosis DIS4G1GX Strong Genetic Variation [14]
MEHMO syndrome DISPH301 Strong Genetic Variation [17]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [18]
Obesity DIS47Y1K Strong Biomarker [19]
Schizophrenia DISSRV2N Strong Biomarker [20]
Scleroderma DISVQ342 Strong Biomarker [12]
Systemic sclerosis DISF44L6 Strong Biomarker [12]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W moderate Biomarker [21]
Female hypogonadism DISWASB4 moderate Biomarker [22]
Liver cancer DISDE4BI moderate Biomarker [21]
Myotonic dystrophy type 2 DIS5ZWF1 moderate Altered Expression [23]
Type-1/2 diabetes DISIUHAP moderate Genetic Variation [24]
Wolcott-Rallison syndrome DISKVKXN moderate Genetic Variation [24]
Melanoma DIS1RRCY Limited Biomarker [25]
Neoplasm DISZKGEW Limited Biomarker [26]
Nervous system disease DISJ7GGT Limited Genetic Variation [27]
Parkinson disease DISQVHKL Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [29]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [30]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [31]
Quercetin DM3NC4M Approved Quercetin increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [32]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [33]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [34]
Marinol DM70IK5 Approved Marinol decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [35]
Aspirin DM672AH Approved Aspirin increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [36]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [34]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [37]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [38]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [42]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [45]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [46]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [47]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [48]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [49]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [40]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [41]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [43]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Eukaryotic translation initiation factor 2 subunit 2 (EIF2S2). [43]
------------------------------------------------------------------------------------

References

1 Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule.Science. 2018 Mar 30;359(6383):eaaq0939. doi: 10.1126/science.aaq0939.
2 Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis.Front Cell Infect Microbiol. 2018 Apr 5;8:112. doi: 10.3389/fcimb.2018.00112. eCollection 2018.
3 Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia.Cell Rep. 2018 Oct 30;25(5):1109-1117.e5. doi: 10.1016/j.celrep.2018.10.021.
4 Novel mechanisms of eIF2B action and regulation by eIF2 phosphorylation.Nucleic Acids Res. 2017 Nov 16;45(20):11962-11979. doi: 10.1093/nar/gkx845.
5 Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer's disease.Neurobiol Aging. 2008 Aug;29(8):1160-6. doi: 10.1016/j.neurobiolaging.2007.02.023. Epub 2007 Apr 8.
6 Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity.Mol Cell Biol. 2004 Mar;24(6):2352-63. doi: 10.1128/MCB.24.6.2352-2363.2004.
7 The PI3K/Akt/GSK-3/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility.Cancer Biol Med. 2019 Feb;16(1):38-54. doi: 10.20892/j.issn.2095-3941.2018.0253.
8 An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer.Nat Genet. 2014 Oct;46(10):1051-9. doi: 10.1038/ng.3073. Epub 2014 Aug 24.
9 Childhood ataxia with CNS hypomyelination/vanishing white matter disease--a common leukodystrophy caused by abnormal control of protein synthesis.Mol Genet Metab. 2006 May;88(1):7-15. doi: 10.1016/j.ymgme.2005.10.019. Epub 2006 Jan 18.
10 Identification of di-substituted ureas that prevent growth of trypanosomes through inhibition of translation initiation.Sci Rep. 2018 Mar 20;8(1):4857. doi: 10.1038/s41598-018-23259-9.
11 The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling.Genomics Proteomics Bioinformatics. 2018 Feb;16(1):73-84. doi: 10.1016/j.gpb.2017.10.002. Epub 2018 Mar 2.
12 Presence of anti-eukaryotic initiation factor-2B, anti-RuvBL1/2 and anti-synthetase antibodies in patients with anti-nuclear antibody negative systemic sclerosis.Rheumatology (Oxford). 2018 Apr 1;57(4):712-717. doi: 10.1093/rheumatology/kex458.
13 Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures.Theranostics. 2016 Jul 18;6(11):1792-809. doi: 10.7150/thno.14584. eCollection 2016.
14 Multi-SNP analysis of GWAS data identifies pathways associated with nonalcoholic fatty liver disease.PLoS One. 2013 Jul 19;8(7):e65982. doi: 10.1371/journal.pone.0065982. Print 2013.
15 eIF2 mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. Mol Cell. 2012 Nov 30;48(4):641-6. doi: 10.1016/j.molcel.2012.09.005. Epub 2012 Oct 11.
16 FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E.PLoS One. 2008 Jul 2;3(7):e2569. doi: 10.1371/journal.pone.0002569.
17 Suppression of MEHMO Syndrome Mutation in eIF2 by Small Molecule ISRIB.Mol Cell. 2020 Feb 20;77(4):875-886.e7. doi: 10.1016/j.molcel.2019.11.008. Epub 2019 Dec 10.
18 eIF2, a subunit of translation-initiation factor EIF2, is a potential therapeutic target for non-small cell lung cancer.Cancer Sci. 2018 Jun;109(6):1843-1852. doi: 10.1111/cas.13602. Epub 2018 May 25.
19 Dietary Intake of Curcumin Improves eIF2 Signaling and Reduces Lipid Levels in the White Adipose Tissue of Obese Mice.Sci Rep. 2018 Jun 13;8(1):9081. doi: 10.1038/s41598-018-27105-w.
20 Thalamic transcriptome screening in three psychiatric states.J Hum Genet. 2009 Nov;54(11):665-75. doi: 10.1038/jhg.2009.93. Epub 2009 Oct 16.
21 The role of CUGBP1 in age-dependent changes of liver functions.Ageing Res Rev. 2012 Sep;11(4):442-9. doi: 10.1016/j.arr.2012.02.007. Epub 2012 Mar 14.
22 The latest on leukodystrophies.Curr Opin Neurol. 2004 Apr;17(2):187-92. doi: 10.1097/00019052-200404000-00017.
23 Expression of RNA CCUG repeats dysregulates translation and degradation of proteins in myotonic dystrophy 2 patients.Am J Pathol. 2009 Aug;175(2):748-62. doi: 10.2353/ajpath.2009.090047. Epub 2009 Jul 9.
24 Endoplasmic reticulum stress and the development of diabetes: a review.Diabetes. 2002 Dec;51 Suppl 3:S455-61. doi: 10.2337/diabetes.51.2007.s455.
25 Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma.Genes Dev. 2017 Jan 1;31(1):18-33. doi: 10.1101/gad.290940.116. Epub 2017 Jan 17.
26 High EIF2B5 mRNA expression and its prognostic significance in liver cancer: a study based on the TCGA and GEO database.Cancer Manag Res. 2018 Nov 20;10:6003-6014. doi: 10.2147/CMAR.S185459. eCollection 2018.
27 eIF2B: recent structural and functional insights into a key regulator of translation.Biochem Soc Trans. 2015 Dec;43(6):1234-40. doi: 10.1042/BST20150164.
28 Identification of risk and age-at-onset genes on chromosome 1p in Parkinson disease.Am J Hum Genet. 2005 Aug;77(2):252-64. doi: 10.1086/432588. Epub 2005 Jun 28.
29 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
30 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
31 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
32 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
33 1,25-Dihydroxyvitamin D3 suppresses gene expression of eukaryotic translation initiation factor 2 in human promyelocytic leukemia HL-60 cells. Cell Struct Funct. 2005;30(1):1-6. doi: 10.1247/csf.30.1.
34 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
35 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
36 Expression profile analysis of human peripheral blood mononuclear cells in response to aspirin. Arch Immunol Ther Exp (Warsz). 2005 Mar-Apr;53(2):151-8.
37 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
38 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
39 A high concentration of genistein down-regulates activin A, Smad3 and other TGF-beta pathway genes in human uterine leiomyoma cells. Exp Mol Med. 2012 Apr 30;44(4):281-92.
40 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
41 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
42 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
45 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
46 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
47 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
48 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
49 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.