General Information of Drug Off-Target (DOT) (ID: OT4JY32Q)

DOT Name Protein argonaute-2 (AGO2)
Synonyms Argonaute2; hAgo2; EC 3.1.26.n2; Argonaute RISC catalytic component 2; Eukaryotic translation initiation factor 2C 2; eIF-2C 2; eIF2C 2; PAZ Piwi domain protein; PPD; Protein slicer
Gene Name AGO2
Related Disease
Lessel-Kreienkamp syndrome ( )
Advanced cancer ( )
Alcohol dependence ( )
Bladder cancer ( )
Breast neoplasm ( )
Carcinoma ( )
Classic Hodgkin lymphoma ( )
Colon cancer ( )
Colon carcinoma ( )
Cytomegalovirus infection ( )
Epithelial ovarian cancer ( )
Familial hypercholesterolemia ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatitis B virus infection ( )
Hepatitis C virus infection ( )
Huntington disease ( )
Hypercholesterolemia, familial, 1 ( )
Hypothyroidism ( )
Latent tuberculosis infection ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Malignant mesothelioma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Plasma cell myeloma ( )
Progressive pseudorheumatoid arthropathy of childhood ( )
Prostate cancer ( )
Prostate carcinoma ( )
Schizophrenia ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Clear cell renal carcinoma ( )
Melanoma ( )
Myeloid leukaemia ( )
Neuroblastoma ( )
Asthma ( )
Cocaine addiction ( )
Colorectal carcinoma ( )
Pallister-Hall syndrome ( )
Parkinson disease ( )
Renal cell carcinoma ( )
Stomach cancer ( )
UniProt ID
AGO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3LUC ; 3LUD ; 3LUG ; 3LUH ; 3LUJ ; 3LUK ; 3QX8 ; 3QX9 ; 4F3T ; 4OLA ; 4OLB ; 4W5N ; 4W5O ; 4W5Q ; 4W5R ; 4W5T ; 4Z4C ; 4Z4D ; 4Z4E ; 4Z4F ; 4Z4G ; 4Z4H ; 4Z4I ; 5JS1 ; 5JS2 ; 5KI6 ; 5T7B ; 5WEA ; 6CBD ; 6MDZ ; 6MFN ; 6MFR ; 6N4O ; 6NIT ; 6RA4 ; 7C6B ; 7D7U ; 7KI3 ; 8D6J ; 8D71
EC Number
3.1.26.n2
Pfam ID
PF08699 ; PF16488 ; PF16487 ; PF16486 ; PF02170 ; PF02171
Sequence
MYSGAGPALAPPAPPPPIQGYAFKPPPRPDFGTSGRTIKLQANFFEMDIPKIDIYHYELD
IKPEKCPRRVNREIVEHMVQHFKTQIFGDRKPVFDGRKNLYTAMPLPIGRDKVELEVTLP
GEGKDRIFKVSIKWVSCVSLQALHDALSGRLPSVPFETIQALDVVMRHLPSMRYTPVGRS
FFTASEGCSNPLGGGREVWFGFHQSVRPSLWKMMLNIDVSATAFYKAQPVIEFVCEVLDF
KSIEEQQKPLTDSQRVKFTKEIKGLKVEITHCGQMKRKYRVCNVTRRPASHQTFPLQQES
GQTVECTVAQYFKDRHKLVLRYPHLPCLQVGQEQKHTYLPLEVCNIVAGQRCIKKLTDNQ
TSTMIRATARSAPDRQEEISKLMRSASFNTDPYVREFGIMVKDEMTDVTGRVLQPPSILY
GGRNKAIATPVQGVWDMRNKQFHTGIEIKVWAIACFAPQRQCTEVHLKSFTEQLRKISRD
AGMPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAEVKRVGDTVL
GMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLPQGRPPVFQQPVIFLGADVTH
PPAGDGKKPSIAAVVGSMDAHPNRYCATVRVQQHRQEIIQDLAAMVRELLIQFYKSTRFK
PTRIIFYRDGVSEGQFQQVLHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTDK
NERVGKSGNIPAGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDELQ
ILTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTSGQSNGRDHQ
ALAKAVQVHQDTLRTMYFA
Function
Required for RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). The 'minimal RISC' appears to include AGO2 bound to a short guide RNA such as a microRNA (miRNA) or short interfering RNA (siRNA). These guide RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. The precise mechanism of gene silencing depends on the degree of complementarity between the miRNA or siRNA and its target. Binding of RISC to a perfectly complementary mRNA generally results in silencing due to endonucleolytic cleavage of the mRNA specifically by AGO2. Binding of RISC to a partially complementary mRNA results in silencing through inhibition of translation, and this is independent of endonuclease activity. May inhibit translation initiation by binding to the 7-methylguanosine cap, thereby preventing the recruitment of the translation initiation factor eIF4-E. May also inhibit translation initiation via interaction with EIF6, which itself binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The inhibition of translational initiation leads to the accumulation of the affected mRNA in cytoplasmic processing bodies (P-bodies), where mRNA degradation may subsequently occur. In some cases RISC-mediated translational repression is also observed for miRNAs that perfectly match the 3' untranslated region (3'-UTR). Can also up-regulate the translation of specific mRNAs under certain growth conditions. Binds to the AU element of the 3'-UTR of the TNF (TNF-alpha) mRNA and up-regulates translation under conditions of serum starvation. Also required for transcriptional gene silencing (TGS), in which short RNAs known as antigene RNAs or agRNAs direct the transcriptional repression of complementary promoter regions; (Microbial infection) Upon Sars-CoV-2 infection, associates with viral miRNA-like small RNA, CoV2-miR-O7a, and may repress mRNAs, such as BATF2, to evade the IFN response.
Reactome Pathway
MicroRNA (miRNA) biogenesis (R-HSA-203927 )
Ca2+ pathway (R-HSA-4086398 )
Small interfering RNA (siRNA) biogenesis (R-HSA-426486 )
Post-transcriptional silencing by small RNAs (R-HSA-426496 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
MAPK6/MAPK4 signaling (R-HSA-5687128 )
Regulation of RUNX1 Expression and Activity (R-HSA-8934593 )
Regulation of PTEN mRNA translation (R-HSA-8943723 )
Competing endogenous RNAs (ceRNAs) regulate PTEN translation (R-HSA-8948700 )
Transcriptional Regulation by MECP2 (R-HSA-8986944 )
Estrogen-dependent gene expression (R-HSA-9018519 )
Regulation of MECP2 expression and activity (R-HSA-9022692 )
NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux (R-HSA-9029569 )
Regulation of CDH11 mRNA translation by microRNAs (R-HSA-9759811 )
Regulation of NPAS4 mRNA translation (R-HSA-9768778 )
M-decay (R-HSA-9820841 )
Pre-NOTCH Transcription and Translation (R-HSA-1912408 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Lessel-Kreienkamp syndrome DIS1IFVA Definitive Autosomal dominant [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Alcohol dependence DIS4ZSCO Strong Genetic Variation [3]
Bladder cancer DISUHNM0 Strong Biomarker [4]
Breast neoplasm DISNGJLM Strong Altered Expression [5]
Carcinoma DISH9F1N Strong Altered Expression [4]
Classic Hodgkin lymphoma DISV1LU6 Strong Genetic Variation [6]
Colon cancer DISVC52G Strong Biomarker [7]
Colon carcinoma DISJYKUO Strong Biomarker [7]
Cytomegalovirus infection DISCEMGC Strong Biomarker [8]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [9]
Familial hypercholesterolemia DISC06IX Strong Biomarker [10]
Gastric cancer DISXGOUK Strong Biomarker [11]
Glioblastoma multiforme DISK8246 Strong Altered Expression [12]
Glioma DIS5RPEH Strong Altered Expression [13]
Hepatitis B virus infection DISLQ2XY Strong Posttranslational Modification [14]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [15]
Huntington disease DISQPLA4 Strong Genetic Variation [6]
Hypercholesterolemia, familial, 1 DISU411W Strong Biomarker [10]
Hypothyroidism DISR0H6D Strong Genetic Variation [16]
Latent tuberculosis infection DIS6R1EH Strong Biomarker [17]
Lung adenocarcinoma DISD51WR Strong Altered Expression [18]
Lung cancer DISCM4YA Strong Biomarker [19]
Lung carcinoma DISTR26C Strong Biomarker [19]
Malignant mesothelioma DISTHJGH Strong Biomarker [20]
Neoplasm DISZKGEW Strong Biomarker [21]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [22]
Ovarian cancer DISZJHAP Strong Biomarker [9]
Ovarian neoplasm DISEAFTY Strong Biomarker [9]
Pancreatic cancer DISJC981 Strong Biomarker [23]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [24]
Progressive pseudorheumatoid arthropathy of childhood DISBMRIW Strong Altered Expression [25]
Prostate cancer DISF190Y Strong Biomarker [26]
Prostate carcinoma DISMJPLE Strong Biomarker [26]
Schizophrenia DISSRV2N Strong Biomarker [27]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [28]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [28]
Clear cell renal carcinoma DISBXRFJ moderate Biomarker [29]
Melanoma DIS1RRCY moderate Altered Expression [30]
Myeloid leukaemia DISMN944 moderate Altered Expression [31]
Neuroblastoma DISVZBI4 Disputed Altered Expression [32]
Asthma DISW9QNS Limited Biomarker [33]
Cocaine addiction DISHTRXG Limited Biomarker [34]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [21]
Pallister-Hall syndrome DISTYTPU Limited Biomarker [35]
Parkinson disease DISQVHKL Limited Genetic Variation [36]
Renal cell carcinoma DISQZ2X8 Limited Biomarker [29]
Stomach cancer DISKIJSX Limited Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Chlorothiazide DMLHESP Approved Protein argonaute-2 (AGO2) increases the Metabolic disorder ADR of Chlorothiazide. [62]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein argonaute-2 (AGO2). [37]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein argonaute-2 (AGO2). [38]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein argonaute-2 (AGO2). [39]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Protein argonaute-2 (AGO2). [40]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein argonaute-2 (AGO2). [41]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein argonaute-2 (AGO2). [42]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Protein argonaute-2 (AGO2). [43]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Protein argonaute-2 (AGO2). [44]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein argonaute-2 (AGO2). [45]
Quercetin DM3NC4M Approved Quercetin increases the expression of Protein argonaute-2 (AGO2). [47]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Protein argonaute-2 (AGO2). [48]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Protein argonaute-2 (AGO2). [49]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Protein argonaute-2 (AGO2). [50]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Protein argonaute-2 (AGO2). [51]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Protein argonaute-2 (AGO2). [52]
Marinol DM70IK5 Approved Marinol increases the expression of Protein argonaute-2 (AGO2). [53]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protein argonaute-2 (AGO2). [54]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Protein argonaute-2 (AGO2). [56]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Protein argonaute-2 (AGO2). [57]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Protein argonaute-2 (AGO2). [52]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Protein argonaute-2 (AGO2). [59]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Protein argonaute-2 (AGO2). [60]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Protein argonaute-2 (AGO2). [61]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Protein argonaute-2 (AGO2). [46]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Protein argonaute-2 (AGO2). [55]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Protein argonaute-2 (AGO2). [58]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of Protein argonaute-2 (AGO2). [55]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The impact of variations in transcription of DICER and AGO2 on exacerbation of childhood B-cell lineage acute lymphoblastic leukaemia.Int J Exp Pathol. 2019 Jun;100(3):184-191. doi: 10.1111/iep.12316. Epub 2019 May 15.
3 Association of microRNA biogenesis pathway gene variants and alcohol dependence risk.DNA Cell Biol. 2015 Mar;34(3):220-6. doi: 10.1089/dna.2014.2549. Epub 2014 Dec 11.
4 Diagnostic and Prognostic Potential of MicroRNA Maturation Regulators Drosha, AGO1 and AGO2 in Urothelial Carcinomas of the Bladder.Int J Mol Sci. 2018 May 31;19(6):1622. doi: 10.3390/ijms19061622.
5 Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells.Endocrinology. 2009 Jan;150(1):14-23. doi: 10.1210/en.2008-0984. Epub 2008 Sep 11.
6 Polymorphisms and expression of genes encoding Argonautes 1 and 2 in autoimmune thyroid diseases.Autoimmunity. 2018 Feb;51(1):35-42. doi: 10.1080/08916934.2017.1416468. Epub 2017 Dec 19.
7 Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21.Biomed Pharmacother. 2017 Nov;95:1644-1653. doi: 10.1016/j.biopha.2017.09.052. Epub 2017 Oct 6.
8 Crispr/Cas9 Mediated Inactivation of Argonaute 2 Reveals its Differential Involvement in Antiviral Responses.Sci Rep. 2017 Apr 21;7(1):1010. doi: 10.1038/s41598-017-01050-6.
9 Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.Autophagy. 2018;14(12):2065-2082. doi: 10.1080/15548627.2018.1501135. Epub 2018 Aug 17.
10 Genotype of the mutant LDL receptor allele is associated with LDL particle size heterogeneity in familial hypercholesterolemia.Atherosclerosis. 2006 Jan;184(1):163-70. doi: 10.1016/j.atherosclerosis.2005.03.027.
11 Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells.Biotechnol Lett. 2016 Jan;38(1):43-50. doi: 10.1007/s10529-015-1964-4. Epub 2015 Oct 1.
12 IRF7 promotes glioma cell invasion by inhibiting AGO2 expression.Tumour Biol. 2015 Jul;36(7):5561-9. doi: 10.1007/s13277-015-3226-4. Epub 2015 Feb 14.
13 Pristimerin inhibits glioma progression by targeting AGO2 and PTPN1 expression via miR-542-5p.Biosci Rep. 2019 May 14;39(5):BSR20182389. doi: 10.1042/BSR20182389. Print 2019 May 31.
14 MicroRNA?0 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells.Mol Med Rep. 2019 Sep;20(3):2285-2293. doi: 10.3892/mmr.2019.10435. Epub 2019 Jun 27.
15 miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5' terminus.Nucleic Acids Res. 2019 Jun 4;47(10):5307-5324. doi: 10.1093/nar/gkz194.
16 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
17 Is latent tuberculosis infection challenging in Iranian health care workers? A systematic review and meta-analysis.PLoS One. 2019 Oct 3;14(10):e0223335. doi: 10.1371/journal.pone.0223335. eCollection 2019.
18 Overexpression of human Argonaute2 inhibits cell and tumor growth.Biochim Biophys Acta. 2013 Mar;1830(3):2553-61. doi: 10.1016/j.bbagen.2012.11.013.
19 HMGA2 functions as a competing endogenous RNA to promote lung cancer progression.Nature. 2014 Jan 9;505(7482):212-7. doi: 10.1038/nature12785. Epub 2013 Dec 4.
20 MicroRNA and mRNA features of malignant pleural mesothelioma and benign asbestos-related pleural effusion.Biomed Res Int. 2015;2015:635748. doi: 10.1155/2015/635748. Epub 2015 Feb 1.
21 Detection of circulating microRNAs with Ago2 complexes to monitor the tumor dynamics of colorectal cancer patients during chemotherapy.Int J Cancer. 2019 May 1;144(9):2169-2180. doi: 10.1002/ijc.31960. Epub 2019 Jan 7.
22 The effects and mechanisms of a biosynthetic ginsenoside 3,12-Di-O-Glc-PPD on non-small cell lung cancer.Onco Targets Ther. 2019 Sep 9;12:7375-7385. doi: 10.2147/OTT.S217039. eCollection 2019.
23 Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: anticancer activity and mechanisms of action.Cancer Lett. 2009 Jun 18;278(2):241-248. doi: 10.1016/j.canlet.2009.01.005. Epub 2009 Feb 8.
24 Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival.BMC Cancer. 2016 May 3;16:297. doi: 10.1186/s12885-016-2331-0.
25 20(S)-25-methoxyl-dammarane-3,12,20-triol attenuates endoplasmic reticulum stress via ERK/MAPK signaling pathway.Eur J Pharmacol. 2018 Oct 5;836:75-82. doi: 10.1016/j.ejphar.2018.08.001. Epub 2018 Aug 7.
26 Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2.Int J Oncol. 2014 Jul;45(1):362-72. doi: 10.3892/ijo.2014.2413. Epub 2014 Apr 30.
27 Schizotypal and paranoid personality disorder in the relatives of patients with schizophrenia and affective disorders: a review.Schizophr Res. 1993 Dec;11(1):81-92. doi: 10.1016/0920-9964(93)90041-g.
28 EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma.Tumour Biol. 2015 Jul;36(7):5071-9. doi: 10.1007/s13277-015-3158-z. Epub 2015 Feb 6.
29 Androgen receptor regulates ASS1P3/miR-34a-5p/ASS1 signaling to promote renal cell carcinoma cell growth.Cell Death Dis. 2019 Apr 18;10(5):339. doi: 10.1038/s41419-019-1330-x.
30 Argonaute Family Protein Expression in Normal Tissue and Cancer Entities.PLoS One. 2016 Aug 12;11(8):e0161165. doi: 10.1371/journal.pone.0161165. eCollection 2016.
31 Knock-down of argonaute 2 (AGO2) induces apoptosis in myeloid leukaemia cells and inhibits siRNA-mediated silencing of transfected oncogenes in HEK-293 cells.Basic Clin Pharmacol Toxicol. 2011 Oct;109(4):274-82. doi: 10.1111/j.1742-7843.2011.00716.x. Epub 2011 May 31.
32 Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes.Cell Death Differ. 2019 Jul;26(7):1346-1364. doi: 10.1038/s41418-018-0220-6. Epub 2018 Oct 19.
33 LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma.Pulmonology. 2020 Jan-Feb;26(1):18-26. doi: 10.1016/j.pulmoe.2019.07.001. Epub 2019 Aug 11.
34 Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction.J Exp Med. 2010 Aug 30;207(9):1843-51. doi: 10.1084/jem.20100451. Epub 2010 Jul 19.
35 Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations.J Appl Genet. 2012 Nov;53(4):415-22. doi: 10.1007/s13353-012-0109-x. Epub 2012 Aug 18.
36 Genetic analysis of the FBXO48 gene in Chinese Han patients with Parkinson disease.Neurosci Lett. 2013 Apr 29;541:224-6. doi: 10.1016/j.neulet.2013.02.031. Epub 2013 Feb 26.
37 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
38 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
39 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
40 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
41 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
42 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
43 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
44 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
45 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
46 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
47 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
48 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
49 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
50 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
51 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
52 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
53 Delta9-tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol Hum Reprod. 2006 May;12(5):321-33. doi: 10.1093/molehr/gal036. Epub 2006 Apr 5.
54 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
55 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
56 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
57 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
58 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
59 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
60 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
61 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
62 Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 2014 Feb;14(1):35-40. doi: 10.1038/tpj.2013.3. Epub 2013 Feb 12.