General Information of Drug Off-Target (DOT) (ID: OTQ8FFNS)

DOT Name Sortilin-related receptor (SORL1)
Synonyms
Low-density lipoprotein receptor relative with 11 ligand-binding repeats; LDLR relative with 11 ligand-binding repeats; LR11; SorLA-1; Sorting protein-related receptor containing LDLR class A repeats; SorLA
Gene Name SORL1
Related Disease
Acute leukaemia ( )
Acute lymphocytic leukaemia ( )
Acute myelogenous leukaemia ( )
Childhood acute lymphoblastic leukemia ( )
Multiple sclerosis ( )
Advanced cancer ( )
Amyloidosis ( )
Bipolar disorder ( )
Cardiovascular disease ( )
Carotid stenosis ( )
Cerebrovascular disease ( )
Cholestasis ( )
Depression ( )
Familial hypercholesterolemia ( )
Huntington disease ( )
Hypercholesterolemia, familial, 1 ( )
Obesity ( )
Parkinson disease ( )
Plasma cell myeloma ( )
Pulmonary arterial hypertension ( )
Schizophrenia ( )
Urinary bladder cancer ( )
Vascular disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Atrial fibrillation ( )
Familial Alzheimer disease ( )
Familial atrial fibrillation ( )
Neuroblastoma ( )
Type-1/2 diabetes ( )
Early-onset autosomal dominant Alzheimer disease ( )
High blood pressure ( )
Non-insulin dependent diabetes ( )
UniProt ID
SORL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DM4; 3G2S; 3G2T; 3WSX; 3WSY; 3WSZ; 7VT0
Pfam ID
PF00041 ; PF00057 ; PF00058 ; PF15902 ; PF15901
Sequence
MATRSSRRESRLPFLFTLVALLPPGALCEVWTQRLHGGSAPLPQDRGFLVVQGDPRELRL
WARGDARGASRADEKPLRRKRSAALQPEPIKVYGQVSLNDSHNQMVVHWAGEKSNVIVAL
ARDSLALARPKSSDVYVSYDYGKSFKKISDKLNFGLGNRSEAVIAQFYHSPADNKRYIFA
DAYAQYLWITFDFCNTLQGFSIPFRAADLLLHSKASNLLLGFDRSHPNKQLWKSDDFGQT
WIMIQEHVKSFSWGIDPYDKPNTIYIERHEPSGYSTVFRSTDFFQSRENQEVILEEVRDF
QLRDKYMFATKVVHLLGSEQQSSVQLWVSFGRKPMRAAQFVTRHPINEYYIADASEDQVF
VCVSHSNNRTNLYISEAEGLKFSLSLENVLYYSPGGAGSDTLVRYFANEPFADFHRVEGL
QGVYIATLINGSMNEENMRSVITFDKGGTWEFLQAPAFTGYGEKINCELSQGCSLHLAQR
LSQLLNLQLRRMPILSKESAPGLIIATGSVGKNLASKTNVYISSSAGARWREALPGPHYY
TWGDHGGIITAIAQGMETNELKYSTNEGETWKTFIFSEKPVFVYGLLTEPGEKSTVFTIF
GSNKENVHSWLILQVNATDALGVPCTENDYKLWSPSDERGNECLLGHKTVFKRRTPHATC
FNGEDFDRPVVVSNCSCTREDYECDFGFKMSEDLSLEVCVPDPEFSGKSYSPPVPCPVGS
TYRRTRGYRKISGDTCSGGDVEARLEGELVPCPLAEENEFILYAVRKSIYRYDLASGATE
QLPLTGLRAAVALDFDYEHNCLYWSDLALDVIQRLCLNGSTGQEVIINSGLETVEALAFE
PLSQLLYWVDAGFKKIEVANPDGDFRLTIVNSSVLDRPRALVLVPQEGVMFWTDWGDLKP
GIYRSNMDGSAAYHLVSEDVKWPNGISVDDQWIYWTDAYLECIERITFSGQQRSVILDNL
PHPYAIAVFKNEIYWDDWSQLSIFRASKYSGSQMEILANQLTGLMDMKIFYKGKNTGSNA
CVPRPCSLLCLPKANNSRSCRCPEDVSSSVLPSGDLMCDCPQGYQLKNNTCVKQENTCLR
NQYRCSNGNCINSIWWCDFDNDCGDMSDERNCPTTICDLDTQFRCQESGTCIPLSYKCDL
EDDCGDNSDESHCEMHQCRSDEYNCSSGMCIRSSWVCDGDNDCRDWSDEANCTAIYHTCE
ASNFQCRNGHCIPQRWACDGDTDCQDGSDEDPVNCEKKCNGFRCPNGTCIPSSKHCDGLR
DCSDGSDEQHCEPLCTHFMDFVCKNRQQCLFHSMVCDGIIQCRDGSDEDAAFAGCSQDPE
FHKVCDEFGFQCQNGVCISLIWKCDGMDDCGDYSDEANCENPTEAPNCSRYFQFRCENGH
CIPNRWKCDRENDCGDWSDEKDCGDSHILPFSTPGPSTCLPNYYRCSSGTCVMDTWVCDG
YRDCADGSDEEACPLLANVTAASTPTQLGRCDRFEFECHQPKTCIPNWKRCDGHQDCQDG
RDEANCPTHSTLTCMSREFQCEDGEACIVLSERCDGFLDCSDESDEKACSDELTVYKVQN
LQWTADFSGDVTLTWMRPKKMPSASCVYNVYYRVVGESIWKTLETHSNKTNTVLKVLKPD
TTYQVKVQVQCLSKAHNTNDFVTLRTPEGLPDAPRNLQLSLPREAEGVIVGHWAPPIHTH
GLIREYIVEYSRSGSKMWASQRAASNFTEIKNLLVNTLYTVRVAAVTSRGIGNWSDSKSI
TTIKGKVIPPPDIHIDSYGENYLSFTLTMESDIKVNGYVVNLFWAFDTHKQERRTLNFRG
SILSHKVGNLTAHTSYEISAWAKTDLGDSPLAFEHVMTRGVRPPAPSLKAKAINQTAVEC
TWTGPRNVVYGIFYATSFLDLYRNPKSLTTSLHNKTVIVSKDEQYLFLVRVVVPYQGPSS
DYVVVKMIPDSRLPPRHLHVVHTGKTSVVIKWESPYDSPDQDLLYAVAVKDLIRKTDRSY
KVKSRNSTVEYTLNKLEPGGKYHIIVQLGNMSKDSSIKITTVSLSAPDALKIITENDHVL
LFWKSLALKEKHFNESRGYEIHMFDSAMNITAYLGNTTDNFFKISNLKMGHNYTFTVQAR
CLFGNQICGEPAILLYDELGSGADASATQAARSTDVAAVVVPILFLILLSLGVGFAILYT
KHRRLQSSFTAFANSHYSSRLGSAIFSSGDDLGEDDEDAPMITGFSDDVPMVIA
Function
Sorting receptor that directs several proteins to their correct location within the cell (Probable). Along with AP-1 complex, involved Golgi apparatus - endosome sorting. Sorting receptor for APP, regulating its intracellular trafficking and processing into amyloidogenic-beta peptides. Retains APP in the trans-Golgi network, hence preventing its transit through late endosomes where amyloid beta peptides Abeta40 and Abeta42 are generated. May also sort newly produced amyloid-beta peptides to lysosomes for catabolism. Does not affect APP trafficking from the endoplasmic reticulum to Golgi compartments. Sorting receptor for the BDNF receptor NTRK2/TRKB that facilitates NTRK2 trafficking between synaptic plasma membranes, postsynaptic densities and cell soma, hence positively regulates BDNF signaling by controlling the intracellular location of its receptor. Sorting receptor for GDNF that promotes GDNF regulated, but not constitutive secretion. Sorting receptor for the GDNF-GFRA1 complex, directing it from the cell surface to endosomes. GDNF is then targeted to lysosomes and degraded, while its receptor GFRA1 recycles back to the cell membrane, resulting in a GDNF clearance pathway. The SORL1-GFRA1 complex further targets RET for endocytosis, but not for degradation, affecting GDNF-induced neurotrophic activities. Sorting receptor for ERBB2/HER2. Regulates ERBB2 subcellular distribution by promoting its recycling after internalization from endosomes back to the plasma membrane, hence stimulating phosphoinositide 3-kinase (PI3K)-dependent ERBB2 signaling. In ERBB2-dependent cancer cells, promotes cell proliferation. Sorting receptor for lipoprotein lipase LPL. Promotes LPL localization to endosomes and later to the lysosomes, leading to degradation of newly synthesized LPL. Potential sorting receptor for APOA5, inducing APOA5 internalization to early endosomes, then to late endosomes, wherefrom a portion is sent to lysosomes and degradation, another portion is sorted to the trans-Golgi network. Sorting receptor for the insulin receptor INSR. Promotes recycling of internalized INSR via the Golgi apparatus back to the cell surface, thereby preventing lysosomal INSR catabolism, increasing INSR cell surface expression and strengthening insulin signal reception in adipose tissue. Does not affect INSR internalization. Plays a role in renal ion homeostasis, controlling the phospho-regulation of SLC12A1/NKCC2 by STK39/SPAK kinase and PPP3CB/calcineurin A beta phosphatase, possibly through intracellular sorting of STK39 and PPP3CB. Stimulates, via the N-terminal ectodomain, the proliferation and migration of smooth muscle cells, possibly by increasing cell surface expression of the urokinase receptor uPAR/PLAUR. This may promote extracellular matrix proteolysis and hence facilitate cell migration. By acting on the migration of intimal smooth muscle cells, may accelerate intimal thickening following vascular injury. Promotes adhesion of monocytes. Stimulates proliferation and migration of monocytes/macrophages. Through its action on intimal smooth muscle cells and macrophages, may accelerate intimal thickening and macrophage foam cell formation in the process of atherosclerosis. Regulates hypoxia-enhanced adhesion of hematopoietic stem and progenitor cells to the bone marrow stromal cells via a PLAUR-mediated pathway. This function is mediated by the N-terminal ectodomain. Metabolic regulator, which functions to maintain the adequate balance between lipid storage and oxidation in response to changing environmental conditions, such as temperature and diet. The N-terminal ectodomain negatively regulates adipose tissue energy expenditure, acting through the inhibition the BMP/Smad pathway. May regulate signaling by the heterodimeric neurotrophic cytokine CLCF1-CRLF1 bound to the CNTFR receptor by promoting the endocytosis of the tripartite complex CLCF1-CRLF1-CNTFR and lysosomal degradation. May regulate IL6 signaling, decreasing cis signaling, possibly by interfering with IL6-binding to membrane-bound IL6R, while up-regulating trans signaling via soluble IL6R.
Tissue Specificity
Highly expressed in brain (at protein level) . Most abundant in the cerebellum, cerebral cortex and occipital pole; low levels in the putamen and thalamus . Expression is significantly reduced in the frontal cortex of patients suffering from Alzheimer disease . Also expressed in spinal cord, spleen, testis, prostate, ovary, thyroid and lymph nodes .
Reactome Pathway
Amyloid fiber formation (R-HSA-977225 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute leukaemia DISDQFDI Definitive Biomarker [1]
Acute lymphocytic leukaemia DISPX75S Definitive Altered Expression [1]
Acute myelogenous leukaemia DISCSPTN Definitive Altered Expression [1]
Childhood acute lymphoblastic leukemia DISJ5D6U Definitive Altered Expression [1]
Multiple sclerosis DISB2WZI Definitive Biomarker [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [3]
Amyloidosis DISHTAI2 Strong Biomarker [4]
Bipolar disorder DISAM7J2 Strong Biomarker [5]
Cardiovascular disease DIS2IQDX Strong Biomarker [6]
Carotid stenosis DISZA8D0 Strong Biomarker [7]
Cerebrovascular disease DISAB237 Strong Genetic Variation [8]
Cholestasis DISDJJWE Strong Biomarker [9]
Depression DIS3XJ69 Strong Biomarker [10]
Familial hypercholesterolemia DISC06IX Strong Biomarker [11]
Huntington disease DISQPLA4 Strong Altered Expression [12]
Hypercholesterolemia, familial, 1 DISU411W Strong Biomarker [11]
Obesity DIS47Y1K Strong Biomarker [13]
Parkinson disease DISQVHKL Strong Genetic Variation [14]
Plasma cell myeloma DIS0DFZ0 Strong Posttranslational Modification [15]
Pulmonary arterial hypertension DISP8ZX5 Strong Biomarker [16]
Schizophrenia DISSRV2N Strong Biomarker [5]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [3]
Vascular disease DISVS67S Strong Biomarker [8]
Arteriosclerosis DISK5QGC moderate Biomarker [6]
Atherosclerosis DISMN9J3 moderate Biomarker [6]
Atrial fibrillation DIS15W6U moderate Biomarker [17]
Familial Alzheimer disease DISE75U4 moderate Biomarker [18]
Familial atrial fibrillation DISL4AGF moderate Biomarker [17]
Neuroblastoma DISVZBI4 moderate Altered Expression [19]
Type-1/2 diabetes DISIUHAP moderate Biomarker [20]
Early-onset autosomal dominant Alzheimer disease DISFAUJO Supportive Autosomal dominant [21]
High blood pressure DISY2OHH Limited Biomarker [22]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved Sortilin-related receptor (SORL1) affects the response to substance of Topotecan. [41]
------------------------------------------------------------------------------------
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Sortilin-related receptor (SORL1). [24]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sortilin-related receptor (SORL1). [25]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sortilin-related receptor (SORL1). [26]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sortilin-related receptor (SORL1). [27]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sortilin-related receptor (SORL1). [28]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sortilin-related receptor (SORL1). [29]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Sortilin-related receptor (SORL1). [27]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Sortilin-related receptor (SORL1). [30]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Sortilin-related receptor (SORL1). [32]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Sortilin-related receptor (SORL1). [33]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Sortilin-related receptor (SORL1). [34]
Menadione DMSJDTY Approved Menadione affects the expression of Sortilin-related receptor (SORL1). [32]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Sortilin-related receptor (SORL1). [27]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Sortilin-related receptor (SORL1). [35]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Sortilin-related receptor (SORL1). [27]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Sortilin-related receptor (SORL1). [27]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Sortilin-related receptor (SORL1). [27]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Sortilin-related receptor (SORL1). [27]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sortilin-related receptor (SORL1). [25]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Sortilin-related receptor (SORL1). [36]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Sortilin-related receptor (SORL1). [24]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Sortilin-related receptor (SORL1). [38]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Sortilin-related receptor (SORL1). [39]
Serotonin DMOFCRY Investigative Serotonin increases the expression of Sortilin-related receptor (SORL1). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Sortilin-related receptor (SORL1). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Sortilin-related receptor (SORL1). [37]
------------------------------------------------------------------------------------

References

1 Circulating soluble LR11/SorLA levels are highly increased and ameliorated by chemotherapy in acute leukemias.Clin Chim Acta. 2012 Oct 9;413(19-20):1542-8. doi: 10.1016/j.cca.2012.06.025. Epub 2012 Jun 29.
2 Chipping away at diagnostics for neurodegenerative diseases.Neurobiol Dis. 2009 Aug;35(2):148-56. doi: 10.1016/j.nbd.2009.02.016. Epub 2009 Mar 10.
3 SORLA regulates endosomal trafficking and oncogenic fitness of HER2.Nat Commun. 2019 May 28;10(1):2340. doi: 10.1038/s41467-019-10275-0.
4 Impact of SORL1 genetic variations on MRI markers in non-demented elders.Oncotarget. 2016 May 31;7(22):31689-98. doi: 10.18632/oncotarget.9300.
5 Genome-wide association study of behavioural and psychiatric features in human prion disease.Transl Psychiatry. 2015 Apr 21;5(4):e552. doi: 10.1038/tp.2015.42.
6 LR11/SorLA links triglyceride-rich lipoproteins to risk of developing cardiovascular disease in FH patients.Atherosclerosis. 2015 Dec;243(2):429-37. doi: 10.1016/j.atherosclerosis.2015.10.009. Epub 2015 Oct 13.
7 Levels of circulating soluble LR11, a regulator of smooth muscle cell migration, are highly associated with atherosclerotic plaques in patients with carotid artery stenosis.Clin Chim Acta. 2019 Mar;490:69-76. doi: 10.1016/j.cca.2018.12.005. Epub 2018 Dec 12.
8 Association of distinct variants in SORL1 with cerebrovascular and neurodegenerative changes related to Alzheimer disease.Arch Neurol. 2008 Dec;65(12):1640-8. doi: 10.1001/archneur.65.12.1640.
9 Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices.Chem Res Toxicol. 2016 Mar 21;29(3):342-51. doi: 10.1021/acs.chemrestox.5b00491. Epub 2016 Mar 9.
10 Exploring the sortilin related receptor, SorLA, in depression.J Affect Disord. 2018 May;232:260-267. doi: 10.1016/j.jad.2018.02.050. Epub 2018 Feb 21.
11 Soluble LR11 associates with aortic root calcification in asymptomatic treated male patients with familial hypercholesterolemia.Atherosclerosis. 2017 Oct;265:299-304. doi: 10.1016/j.atherosclerosis.2017.06.018. Epub 2017 Jun 9.
12 SORLA-mediated trafficking of TrkB enhances the response of neurons to BDNF.PLoS One. 2013 Aug 19;8(8):e72164. doi: 10.1371/journal.pone.0072164. eCollection 2013.
13 SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity.J Clin Invest. 2016 Jul 1;126(7):2706-20. doi: 10.1172/JCI84708. Epub 2016 Jun 20.
14 Alzheimer disease associated variants in SORL1 accelerate dementia development in Parkinson disease.Neurosci Lett. 2018 May 1;674:123-126. doi: 10.1016/j.neulet.2018.03.036. Epub 2018 Mar 19.
15 Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.Oncotarget. 2016 Dec 6;7(49):80664-80679. doi: 10.18632/oncotarget.13025.
16 Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation With Medial Thickening in Mice.Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1972-9. doi: 10.1161/ATVBAHA.116.307900. Epub 2016 Aug 4.
17 Biobank-driven genomic discovery yields new insight into atrial fibrillation biology.Nat Genet. 2018 Sep;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3. Epub 2018 Jul 30.
18 SORL1 Variants in Familial Alzheimer's Disease.J Alzheimers Dis. 2018;61(4):1275-1281. doi: 10.3233/JAD-170590.
19 Markedly induced expression of LR11 in atherosclerosis.J Atheroscler Thromb. 2000;7(1):21-5. doi: 10.5551/jat1994.7.21.
20 Diabetes-associated SorCS1 regulates Alzheimer's amyloid-beta metabolism: evidence for involvement of SorL1 and the retromer complex.J Neurosci. 2010 Sep 29;30(39):13110-5. doi: 10.1523/JNEUROSCI.3872-10.2010.
21 High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry. 2012 Sep;17(9):875-9. doi: 10.1038/mp.2012.15. Epub 2012 Apr 3.
22 Genetic risk factors for cerebral small-vessel disease in hypertensive patients from a genetically isolated population.J Neurol Neurosurg Psychiatry. 2011 Jan;82(1):41-4. doi: 10.1136/jnnp.2009.176362. Epub 2010 Jul 28.
23 Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention.J Neurosci. 2007 Dec 26;27(52):14299-307. doi: 10.1523/JNEUROSCI.3593-07.2007.
24 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
25 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
26 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
27 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
28 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
29 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
30 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
31 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
32 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
33 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
34 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
35 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
36 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
37 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
38 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
39 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
40 Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells. Biochem Biophys Res Commun. 2014 Apr 18;446(4):906-10. doi: 10.1016/j.bbrc.2014.03.031. Epub 2014 Mar 17.
41 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.