General Information of Drug Off-Target (DOT) (ID: OTH559LU)

DOT Name Low-density lipoprotein receptor (LDLR)
Synonyms LDL receptor
Gene Name LDLR
Related Disease
Hypercholesterolemia, familial, 1 ( )
Homozygous familial hypercholesterolemia ( )
UniProt ID
LDLR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1AJJ; 1D2J; 1F5Y; 1F8Z; 1HJ7; 1HZ8; 1I0U; 1IJQ; 1LDL; 1LDR; 1N7D; 1XFE; 2FCW; 2KRI; 2LGP; 2M7P; 2MG9; 2W2M; 2W2N; 2W2O; 2W2P; 2W2Q; 3BPS; 3GCW; 3GCX; 3M0C; 3P5B; 3P5C; 3SO6; 4NE9; 5OY9; 5OYL
Pfam ID
PF07645 ; PF14670 ; PF00057 ; PF00058
Sequence
MGPWGWKLRWTVALLLAAAGTAVGDRCERNEFQCQDGKCISYKWVCDGSAECQDGSDESQ
ETCLSVTCKSGDFSCGGRVNRCIPQFWRCDGQVDCDNGSDEQGCPPKTCSQDEFRCHDGK
CISRQFVCDSDRDCLDGSDEASCPVLTCGPASFQCNSSTCIPQLWACDNDPDCEDGSDEW
PQRCRGLYVFQGDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAVATCRPDE
FQCSDGNCIHGSRQCDREYDCKDMSDEVGCVNVTLCEGPNKFKCHSGECITLDKVCNMAR
DCRDWSDEPIKECGTNECLDNNGGCSHVCNDLKIGYECLCPDGFQLVAQRRCEDIDECQD
PDTCSQLCVNLEGGYKCQCEEGFQLDPHTKACKAVGSIAYLFFTNRHEVRKMTLDRSEYT
SLIPNLRNVVALDTEVASNRIYWSDLSQRMICSTQLDRAHGVSSYDTVISRDIQAPDGLA
VDWIHSNIYWTDSVLGTVSVADTKGVKRKTLFRENGSKPRAIVVDPVHGFMYWTDWGTPA
KIKKGGLNGVDIYSLVTENIQWPNGITLDLLSGRLYWVDSKLHSISSIDVNGGNRKTILE
DEKRLAHPFSLAVFEDKVFWTDIINEAIFSANRLTGSDVNLLAENLLSPEDMVLFHNLTQ
PRGVNWCERTTLSNGGCQYLCLPAPQINPHSPKFTCACPDGMLLARDMRSCLTEAEAAVA
TQETSTVRLKVSSTAVRTQHTTTRPVPDTSRLPGATPGLTTVEIVTMSHQALGDVAGRGN
EKKPSSVRALSIVLPIVLLVFLCLGVFLLWKNWRLKNINSINFDNPVYQKTTEDEVHICH
NQDGYSYPSRQMVSLEDDVA
Function
Binds low density lipoprotein /LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Forms a ternary complex with PGRMC1 and TMEM97 receptors which increases LDLR-mediated LDL internalization ; (Microbial infection) Acts as a receptor for hepatitis C virus in hepatocytes, but not through a direct interaction with viral proteins; (Microbial infection) Acts as a receptor for Vesicular stomatitis virus; (Microbial infection) In case of HIV-1 infection, may function as a receptor for extracellular Tat in neurons, mediating its internalization in uninfected cells.
KEGG Pathway
Endocytosis (hsa04144 )
Ovarian steroidogenesis (hsa04913 )
Aldosterone synthesis and secretion (hsa04925 )
Cortisol synthesis and secretion (hsa04927 )
Cushing syndrome (hsa04934 )
Bile secretion (hsa04976 )
Cholesterol metabolism (hsa04979 )
Toxoplasmosis (hsa05145 )
Hepatitis C (hsa05160 )
Lipid and atherosclerosis (hsa05417 )
Reactome Pathway
Clathrin-mediated endocytosis (R-HSA-8856828 )
Chylomicron clearance (R-HSA-8964026 )
LDL clearance (R-HSA-8964038 )
Retinoid metabolism and transport (R-HSA-975634 )
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypercholesterolemia, familial, 1 DISU411W Definitive Semidominant [1]
Homozygous familial hypercholesterolemia DISRCNCF Supportive Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Low-density lipoprotein receptor (LDLR) affects the response to substance of Paclitaxel. [68]
Salbutamol DMN9CWF Approved Low-density lipoprotein receptor (LDLR) affects the response to substance of Salbutamol. [70]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
DTI-015 DMXZRW0 Approved Low-density lipoprotein receptor (LDLR) affects the uptake of DTI-015. [69]
ANW-32821 DMMJOZD Phase 2 Low-density lipoprotein receptor (LDLR) increases the uptake of ANW-32821. [71]
------------------------------------------------------------------------------------
76 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Low-density lipoprotein receptor (LDLR). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Low-density lipoprotein receptor (LDLR). [4]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Low-density lipoprotein receptor (LDLR). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Low-density lipoprotein receptor (LDLR). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Low-density lipoprotein receptor (LDLR). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Low-density lipoprotein receptor (LDLR). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Low-density lipoprotein receptor (LDLR). [9]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Low-density lipoprotein receptor (LDLR). [10]
Quercetin DM3NC4M Approved Quercetin increases the expression of Low-density lipoprotein receptor (LDLR). [12]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Low-density lipoprotein receptor (LDLR). [13]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Low-density lipoprotein receptor (LDLR). [14]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Low-density lipoprotein receptor (LDLR). [15]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Low-density lipoprotein receptor (LDLR). [16]
Carbamazepine DMZOLBI Approved Carbamazepine decreases the expression of Low-density lipoprotein receptor (LDLR). [17]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Low-density lipoprotein receptor (LDLR). [18]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Low-density lipoprotein receptor (LDLR). [19]
Progesterone DMUY35B Approved Progesterone increases the expression of Low-density lipoprotein receptor (LDLR). [20]
Menadione DMSJDTY Approved Menadione increases the expression of Low-density lipoprotein receptor (LDLR). [13]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Low-density lipoprotein receptor (LDLR). [21]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Low-density lipoprotein receptor (LDLR). [22]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Low-density lipoprotein receptor (LDLR). [23]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Low-density lipoprotein receptor (LDLR). [24]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Low-density lipoprotein receptor (LDLR). [25]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Low-density lipoprotein receptor (LDLR). [26]
Nicotine DMWX5CO Approved Nicotine increases the expression of Low-density lipoprotein receptor (LDLR). [27]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Low-density lipoprotein receptor (LDLR). [28]
Clozapine DMFC71L Approved Clozapine increases the expression of Low-density lipoprotein receptor (LDLR). [29]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Low-density lipoprotein receptor (LDLR). [30]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol increases the expression of Low-density lipoprotein receptor (LDLR). [31]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Low-density lipoprotein receptor (LDLR). [32]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Low-density lipoprotein receptor (LDLR). [33]
Haloperidol DM96SE0 Approved Haloperidol increases the expression of Low-density lipoprotein receptor (LDLR). [29]
Liothyronine DM6IR3P Approved Liothyronine increases the expression of Low-density lipoprotein receptor (LDLR). [34]
Vitamin C DMXJ7O8 Approved Vitamin C increases the expression of Low-density lipoprotein receptor (LDLR). [36]
Hydrocortisone DMGEMB7 Approved Hydrocortisone decreases the expression of Low-density lipoprotein receptor (LDLR). [37]
Dactinomycin DM2YGNW Approved Dactinomycin decreases the expression of Low-density lipoprotein receptor (LDLR). [36]
Lovastatin DM9OZWQ Approved Lovastatin increases the expression of Low-density lipoprotein receptor (LDLR). [38]
Olanzapine DMPFN6Y Approved Olanzapine increases the expression of Low-density lipoprotein receptor (LDLR). [29]
Levonorgestrel DM1DP7T Approved Levonorgestrel affects the expression of Low-density lipoprotein receptor (LDLR). [31]
Flufenamic Acid DMC8VNH Approved Flufenamic Acid increases the expression of Low-density lipoprotein receptor (LDLR). [30]
Desogestrel DM27U4Y Approved Desogestrel increases the expression of Low-density lipoprotein receptor (LDLR). [31]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Low-density lipoprotein receptor (LDLR). [39]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Low-density lipoprotein receptor (LDLR). [40]
Isoflavone DM7U58J Phase 4 Isoflavone affects the expression of Low-density lipoprotein receptor (LDLR). [41]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Low-density lipoprotein receptor (LDLR). [42]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Low-density lipoprotein receptor (LDLR). [43]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Low-density lipoprotein receptor (LDLR). [44]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of Low-density lipoprotein receptor (LDLR). [45]
Chlorpromazine DMBGZI3 Phase 3 Trial Chlorpromazine increases the expression of Low-density lipoprotein receptor (LDLR). [29]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the expression of Low-density lipoprotein receptor (LDLR). [32]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone decreases the expression of Low-density lipoprotein receptor (LDLR). [34]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Low-density lipoprotein receptor (LDLR). [46]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Low-density lipoprotein receptor (LDLR). [47]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Low-density lipoprotein receptor (LDLR). [48]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Low-density lipoprotein receptor (LDLR). [49]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Low-density lipoprotein receptor (LDLR). [50]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Low-density lipoprotein receptor (LDLR). [52]
Celastrol DMWQIJX Preclinical Celastrol increases the expression of Low-density lipoprotein receptor (LDLR). [53]
UNC0379 DMD1E4J Preclinical UNC0379 increases the expression of Low-density lipoprotein receptor (LDLR). [54]
PIRINIXIC ACID DM82Y75 Preclinical PIRINIXIC ACID decreases the expression of Low-density lipoprotein receptor (LDLR). [25]
Puromycin DMDKLB5 Preclinical Puromycin decreases the expression of Low-density lipoprotein receptor (LDLR). [55]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Low-density lipoprotein receptor (LDLR). [56]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Low-density lipoprotein receptor (LDLR). [57]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Low-density lipoprotein receptor (LDLR). [16]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Low-density lipoprotein receptor (LDLR). [58]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Low-density lipoprotein receptor (LDLR). [59]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Low-density lipoprotein receptor (LDLR). [60]
Cycloheximide DMGDA3C Investigative Cycloheximide decreases the expression of Low-density lipoprotein receptor (LDLR). [55]
PP-242 DM2348V Investigative PP-242 decreases the expression of Low-density lipoprotein receptor (LDLR). [61]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol decreases the expression of Low-density lipoprotein receptor (LDLR). [42]
27-hydroxycholesterol DM2L6OZ Investigative 27-hydroxycholesterol decreases the activity of Low-density lipoprotein receptor (LDLR). [62]
GW-3965 DMG60ET Investigative GW-3965 decreases the expression of Low-density lipoprotein receptor (LDLR). [63]
T0901317 DMZQVDI Investigative T0901317 increases the expression of Low-density lipoprotein receptor (LDLR). [64]
Ganoderic acid A DM42EVG Investigative Ganoderic acid A decreases the expression of Low-density lipoprotein receptor (LDLR). [65]
25-hydroxycholesterol DMCHAQ7 Investigative 25-hydroxycholesterol decreases the expression of Low-density lipoprotein receptor (LDLR). [66]
NADA DM3ORGM Investigative NADA decreases the expression of Low-density lipoprotein receptor (LDLR). [67]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Low-density lipoprotein receptor (LDLR). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Low-density lipoprotein receptor (LDLR). [51]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bicalutamide DMZMSPF Approved Bicalutamide affects the localization of Low-density lipoprotein receptor (LDLR). [35]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone affects the localization of Low-density lipoprotein receptor (LDLR). [35]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Familial Hypercholesterolemia. 2014 Jan 2 [updated 2022 Jul 7]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis. 2003 Jul;169(1):71-6.
9 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
10 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
11 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
12 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
13 Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002 Nov 1;62(21):6246-54.
14 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
15 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
16 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
17 Phospholipidosis induced by PPARgama signaling in human bronchial epithelial (BEAS-2B) cells exposed to amiodarone. Toxicol Sci. 2011 Mar;120(1):98-108.
18 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
19 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
20 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
21 miR-148a/LDLR mediates hypercholesterolemia induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Appl Pharmacol. 2020 May 15;395:114979. doi: 10.1016/j.taap.2020.114979. Epub 2020 Mar 29.
22 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
23 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
24 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
25 In Vitro and In Vivo Characterizations of Chiglitazar, a Newly Identified PPAR Pan-Agonist. PPAR Res. 2012;2012:546548. doi: 10.1155/2012/546548. Epub 2012 Oct 22.
26 Prenatal ethanol exposure-induced a low level of foetal blood cholesterol and its mechanism of IGF1-related placental cholesterol transport dysfunction. Toxicology. 2019 Aug 1;424:152237. doi: 10.1016/j.tox.2019.152237. Epub 2019 Jun 18.
27 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
28 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
29 Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci. 2006 Oct 20;7:69.
30 Enhancement of low density lipoprotein catabolism by non-steroidal anti-inflammatory drugs in cultured HepG2 cells. Eur J Pharmacol. 1999 May 21;372(3):311-8. doi: 10.1016/s0014-2999(99)00246-0.
31 Study of low-density lipoprotein receptor regulation by oral (steroid) contraceptives: desogestrel, levonorgestrel and ethinyl estradiol in JEG-3 cell line and placental tissue. Contraception. 2007 Oct;76(4):297-305. doi: 10.1016/j.contraception.2007.06.011. Epub 2007 Sep 14.
32 Differential regulation of apolipoprotein B secretion from HepG2 cells by two HMG-CoA reductase inhibitors, atorvastatin and simvastatin. J Lipid Res. 1999 Jun;40(6):1078-89.
33 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
34 Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem Biophys Res Commun. 1998 Aug 19;249(2):517-21. doi: 10.1006/bbrc.1998.9174.
35 Labeling and identification of LNCaP cell surface proteins: a pilot study. Prostate. 2007 Jun 15;67(9):943-54. doi: 10.1002/pros.20580.
36 Ascorbic acid enhances low-density lipoprotein receptor expression by suppressing proprotein convertase subtilisin/kexin 9 expression. J Biol Chem. 2020 Nov 20;295(47):15870-15882. doi: 10.1074/jbc.RA120.015623. Epub 2020 Sep 10.
37 Glucocorticoid programming mechanism for hypercholesterolemia in prenatal ethanol-exposed adult offspring rats. Toxicol Appl Pharmacol. 2019 Jul 15;375:46-56.
38 Effect of atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and triacylglycerides in HepG2 cells. Biochem Pharmacol. 2001 Dec 1;62(11):1545-55. doi: 10.1016/s0006-2952(01)00790-0.
39 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
40 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
41 Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J Nutr. 2006 Jan;136(1):75-82.
42 Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins. Atherosclerosis. 2012 Feb;220(2):369-74. doi: 10.1016/j.atherosclerosis.2011.11.006. Epub 2011 Nov 16.
43 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
44 Curcumin induces changes in expression of genes involved in cholesterol homeostasis. J Nutr Biochem. 2007 Feb;18(2):113-9.
45 The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005 Jun 15;11(12):4610-9.
46 Expression of endogenous retroviruses reflects increased usage of atypical enhancers in T cells. EMBO J. 2019 Jun 17;38(12):e101107. doi: 10.15252/embj.2018101107. Epub 2019 May 8.
47 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
48 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
49 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
50 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
51 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
52 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
53 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
54 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
55 Quercetin up-regulates LDL receptor expression in HepG2 cells. Phytother Res. 2012 Nov;26(11):1688-94. doi: 10.1002/ptr.4646. Epub 2012 Mar 3.
56 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
57 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
58 Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr. 2003 Mar;133(3):700-6. doi: 10.1093/jn/133.3.700.
59 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
60 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
61 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
62 Effects of cyclosporin on cholesterol 27-hydroxylation and LDL receptor activity in HepG2 cells. J Lipid Res. 1996 Jan;37(1):179-91.
63 Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in Astrocytes. PLoS One. 2016 Sep 6;11(9):e0162384. doi: 10.1371/journal.pone.0162384. eCollection 2016.
64 Liver X receptor and retinoic X receptor agonists modulate the expression of genes involved in lipid metabolism in human endothelial cells. Int J Mol Med. 2005 Oct;16(4):717-22.
65 Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact. 2018 Jun 25;290:77-87.
66 Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells. Oncotarget. 2016 Aug 9;7(32):52392-52403.
67 N-arachidonoyl dopamine inhibits epithelial-mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. J Biochem Mol Toxicol. 2021 Apr;35(4):e22693. doi: 10.1002/jbt.22693. Epub 2021 Jan 4.
68 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
69 Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol. 2002 Jun;49(6):487-98. doi: 10.1007/s00280-002-0437-3. Epub 2002 Mar 21.
70 Single nucleotide polymorphisms in the apolipoprotein B and low density lipoprotein receptor genes affect response to antihypertensive treatment. BMC Cardiovasc Disord. 2004 Sep 28;4(1):16. doi: 10.1186/1471-2261-4-16.
71 Mitochondrial cholesterol transport: a possible target in the management of hyperlipidemia. Lipids. 2005 Dec;40(12):1237-44. doi: 10.1007/s11745-005-1491-0.