General Information of Drug Off-Target (DOT) (ID: OTIFXW8D)

DOT Name PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1)
Synonyms EC 3.1.3.16; Pleckstrin homology domain-containing family E member 1; PH domain-containing family E member 1; Suprachiasmatic nucleus circadian oscillatory protein; hSCOP
Gene Name PHLPP1
Related Disease
Adenocarcinoma ( )
Colonic neoplasm ( )
Colorectal neoplasm ( )
Diabetic kidney disease ( )
Hyperglycemia ( )
Metastatic melanoma ( )
Adult glioblastoma ( )
Adult lymphoma ( )
Advanced cancer ( )
Astrocytoma ( )
Cardiac arrest ( )
Cardiovascular disease ( )
Colon cancer ( )
Colon carcinoma ( )
Dementia ( )
Esophageal squamous cell carcinoma ( )
Glioblastoma multiforme ( )
Glioma ( )
Gram-negative bacterial infection ( )
Hepatocellular carcinoma ( )
Huntington disease ( )
Hypopharyngeal squamous cell carcinoma ( )
Intervertebral disc degeneration ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lymphoma ( )
Non-small-cell lung cancer ( )
Obesity ( )
Osteoarthritis ( )
Pancreatic adenocarcinoma ( )
Pediatric lymphoma ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Squamous cell carcinoma ( )
Coronary atherosclerosis ( )
Myocardial ischemia ( )
Non-insulin dependent diabetes ( )
Prostate cancer ( )
Small lymphocytic lymphoma ( )
Castration-resistant prostate carcinoma ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Matthew-Wood syndrome ( )
Melanoma ( )
Pancreatic ductal carcinoma ( )
Tuberous sclerosis ( )
Type-1/2 diabetes ( )
UniProt ID
PHLP1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.3.16
Pfam ID
PF13516 ; PF13855 ; PF00169 ; PF00481
Sequence
MEPAAAATVQRLPELGREDRASAPAAAAAAAAAAAAAAAALAAAAGGGRSPEPALTPAAP
SGGNGSGSGAREEAPGEAPPGPLPGRAGGAGRRRRRGAPQPIAGGAAPVPGAGGGANSLL
LRRGRLKRNLSAAAAAASSSSSSSAAAASHSPGAAGLPASCSASASLCTRSLDRKTLLLK
HRQTLQLQPSDRDWVRHQLQRGCVHVFDRHMASTYLRPVLCTLDTTAGEVAARLLQLGHK
GGGVVKVLGQGPGAAAAREPAEPPPEAGPRLAPPEPRDSEVPPARSAPGAFGGPPRAPPA
DLPLPVGGPGGWSRRASPAPSDSSPGEPFVGGPVSSPRAPRPVVSDTESFSLSPSAESVS
DRLDPYSSGGGSSSSSEELEADAASAPTGVPGQPRRPGHPAQPLPLPQTASSPQPQQKAP
RAIDSPGGAVREGSCEEKAAAAVAPGGLQSTPGRSGVTAEKAPPPPPPPTLYVQLHGETT
RRLEAEEKPLQIQNDYLFQLGFGELWRVQEEGMDSEIGCLIRFYAGKPHSTGSSERIQLS
GMYNVRKGKMQLPVNRWTRRQVILCGTCLIVSSVKDSLTGKMHVLPLIGGKVEEVKKHQH
CLAFSSSGPQSQTYYICFDTFTEYLRWLRQVSKVASQRISSVDLSCCSLEHLPANLFYSQ
DLTHLNLKQNFLRQNPSLPAARGLNELQRFTKLKSLNLSNNHLGDFPLAVCSIPTLAELN
VSCNALRSVPAAVGVMHNLQTFLLDGNFLQSLPAELENMKQLSYLGLSFNEFTDIPEVLE
KLTAVDKLCMSGNCVETLRLQALRKMPHIKHVDLRLNVIRKLIADEVDFLQHVTQLDLRD
NKLGDLDAMIFNNIEVLHCERNQLVTLDICGYFLKALYASSNELVQLDVYPVPNYLSYMD
VSRNRLENVPEWVCESRKLEVLDIGHNQICELPARLFCNSSLRKLLAGHNQLARLPERLE
RTSVEVLDVQHNQLLELPPNLLMKADSLRFLNASANKLESLPPATLSEETNSILQELYLT
NNSLTDKCVPLLTGHPHLKILHMAYNRLQSFPASKMAKLEELEEIDLSGNKLKAIPTTIM
NCRRMHTVIAHSNCIEVFPEVMQLPEIKCVDLSCNELSEVTLPENLPPKLQELDLTGNPR
LVLDHKTLELLNNIRCFKIDQPSTGDASGAPAVWSHGYTEASGVKNKLCVAALSVNNFCD
NREALYGVFDGDRNVEVPYLLQCTMSDILAEELQKTKNEEEYMVNTFIVMQRKLGTAGQK
LGGAAVLCHIKHDPVDPGGSFTLTSANVGKCQTVLCRNGKPLPLSRSYIMSCEEELKRIK
QHKAIITEDGKVNGVTESTRILGYTFLHPSVVPRPHVQSVLLTPQDEFFILGSKGLWDSL
SVEEAVEAVRNVPDALAAAKKLCTLAQSYGCHDSISAVVVQLSVTEDSFCCCELSAGGAV
PPPSPGIFPPSVNMVIKDRPSDGLGVPSSSSGMASEISSELSTSEMSSEVGSTASDEPPP
GALSENSPAYPSEQRCMLHPICLSNSFQRQLSSATFSSAFSDNGLDSDDEEPIEGVFTNG
SRVEVEVDIHCSRAKEKEKQQHLLQVPAEASDEGIVISANEDEPGLPRKADFSAVGTIGR
RRANGSVAPQERSHNVIEVATDAPLRKPGGYFAAPAQPDPDDQFIIPPELEEEVKEIMKH
HQEQQQQQQPPPPPQLQPQLPRHYQLDQLPDYYDTPL
Function
Protein phosphatase involved in regulation of Akt and PKC signaling. Mediates dephosphorylation in the C-terminal domain hydrophobic motif of members of the AGC Ser/Thr protein kinase family; specifically acts on 'Ser-473' of AKT2 and AKT3, 'Ser-660' of PRKCB and 'Ser-657' of PRKCA. Isoform 2 seems to have a major role in regulating Akt signaling in hippocampal neurons. Akt regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-473' of Akt triggers apoptosis and suppression of tumor growth. Dephosphorylation of PRKCA and PRKCB leads to their destabilization and degradation. Dephosphorylates STK4 on 'Thr-387' leading to STK4 activation and apoptosis. Dephosphorylates RPS6KB1 and is involved in regulation of cap-dependent translation. Inhibits cancer cell proliferation and may act as a tumor suppressor. Dephosphorylates RAF1 inhibiting its kinase activity. May act as a negative regulator of K-Ras signaling in membrane rafts. Involved in the hippocampus-dependent long-term memory formation. Involved in circadian control by regulating the consolidation of circadian periodicity after resetting. Involved in development and function of regulatory T-cells.
Tissue Specificity
In colorectal cancer tissue, expression is highest in the surface epithelium of normal colonic mucosa adjacent to the cancer tissue but is largely excluded from the crypt bases. Expression is lost or significantly decreased in 78% of tested tumors (at protein level). Ubiquitously expressed in non-cancerous tissues.
KEGG Pathway
PI3K-Akt sig.ling pathway (hsa04151 )
Reactome Pathway
Negative regulation of the PI3K/AKT network (R-HSA-199418 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Definitive Biomarker [1]
Colonic neoplasm DISSZ04P Definitive Biomarker [1]
Colorectal neoplasm DISR1UCN Definitive Altered Expression [1]
Diabetic kidney disease DISJMWEY Definitive Biomarker [2]
Hyperglycemia DIS0BZB5 Definitive Altered Expression [2]
Metastatic melanoma DISSL43L Definitive Biomarker [3]
Adult glioblastoma DISVP4LU Strong Altered Expression [4]
Adult lymphoma DISK8IZR Strong Altered Expression [5]
Advanced cancer DISAT1Z9 Strong Biomarker [6]
Astrocytoma DISL3V18 Strong Altered Expression [7]
Cardiac arrest DIS9DIA4 Strong Altered Expression [8]
Cardiovascular disease DIS2IQDX Strong Biomarker [9]
Colon cancer DISVC52G Strong Biomarker [10]
Colon carcinoma DISJYKUO Strong Biomarker [10]
Dementia DISXL1WY Strong Biomarker [11]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [12]
Glioblastoma multiforme DISK8246 Strong Altered Expression [4]
Glioma DIS5RPEH Strong Biomarker [4]
Gram-negative bacterial infection DIS8MM3L Strong Altered Expression [13]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [14]
Huntington disease DISQPLA4 Strong Altered Expression [15]
Hypopharyngeal squamous cell carcinoma DISDDD65 Strong Altered Expression [16]
Intervertebral disc degeneration DISG3AIM Strong Biomarker [17]
Lung adenocarcinoma DISD51WR Strong Altered Expression [18]
Lung cancer DISCM4YA Strong Altered Expression [19]
Lung carcinoma DISTR26C Strong Altered Expression [19]
Lymphoma DISN6V4S Strong Altered Expression [5]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [20]
Obesity DIS47Y1K Strong Biomarker [21]
Osteoarthritis DIS05URM Strong Biomarker [22]
Pancreatic adenocarcinoma DISKHX7S Strong Altered Expression [6]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [5]
Prostate carcinoma DISMJPLE Strong Altered Expression [23]
Prostate neoplasm DISHDKGQ Strong Biomarker [24]
Squamous cell carcinoma DISQVIFL Strong Biomarker [16]
Coronary atherosclerosis DISKNDYU moderate Altered Expression [25]
Myocardial ischemia DISFTVXF moderate Altered Expression [25]
Non-insulin dependent diabetes DISK1O5Z moderate Biomarker [9]
Prostate cancer DISF190Y moderate Altered Expression [23]
Small lymphocytic lymphoma DIS30POX moderate Altered Expression [5]
Castration-resistant prostate carcinoma DISVGAE6 Limited Biomarker [26]
Gallbladder cancer DISXJUAF Limited Altered Expression [27]
Gallbladder carcinoma DISD6ACL Limited Altered Expression [27]
Matthew-Wood syndrome DISA7HR7 Limited Biomarker [28]
Melanoma DIS1RRCY Limited Altered Expression [3]
Pancreatic ductal carcinoma DIS26F9Q Limited Biomarker [28]
Tuberous sclerosis DISEMUGZ Limited Biomarker [29]
Type-1/2 diabetes DISIUHAP Limited Altered Expression [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [31]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [37]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [39]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [32]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [33]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [34]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [35]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1). [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice.Gastroenterology. 2014 May;146(5):1301-12.e1-10. doi: 10.1053/j.gastro.2014.02.003. Epub 2014 Feb 11.
2 Activation of GSK3/-TrCP axis via PHLPP1 exacerbates Nrf2 degradation leading to impairment in cell survival pathway during diabetic nephropathy.Free Radic Biol Med. 2018 May 20;120:414-424. doi: 10.1016/j.freeradbiomed.2018.04.550. Epub 2018 Apr 12.
3 PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation.Oncogene. 2018 Apr;37(17):2225-2236. doi: 10.1038/s41388-017-0061-7. Epub 2018 Feb 2.
4 Role of PHLPP1 in inflammation response: Its loss contributes to gliomas development and progression.Int Immunopharmacol. 2016 May;34:229-234. doi: 10.1016/j.intimp.2016.02.034. Epub 2016 Mar 10.
5 Reduced expression of the tumor suppressor PHLPP1 enhances the antiapoptotic B-cell receptor signal in chronic lymphocytic leukemia B-cells.Leukemia. 2010 Dec;24(12):2063-71. doi: 10.1038/leu.2010.201. Epub 2010 Sep 23.
6 Protein Kinase C Quality Control by Phosphatase PHLPP1Unveils Loss-of-Function Mechanism in Cancer.Mol Cell. 2019 Apr 18;74(2):378-392.e5. doi: 10.1016/j.molcel.2019.02.018. Epub 2019 Mar 20.
7 Mislocalization of the E3 ligase, -transducin repeat-containing protein 1 (-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt.J Biol Chem. 2011 Jun 3;286(22):19777-88. doi: 10.1074/jbc.M111.237081. Epub 2011 Mar 28.
8 Pharmacological inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes.J Pharmacol Exp Ther. 2013 Nov;347(2):516-28. doi: 10.1124/jpet.113.206888. Epub 2013 Sep 10.
9 PHLPP: a putative cellular target during insulin resistance and type 2 diabetes.J Endocrinol. 2017 Jun;233(3):R185-R198. doi: 10.1530/JOE-17-0081. Epub 2017 Apr 20.
10 MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1.Expert Opin Ther Targets. 2015;19(8):1017-26. doi: 10.1517/14728222.2015.1057569. Epub 2015 Jun 24.
11 Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.Metab Brain Dis. 2017 Apr;32(2):321-329. doi: 10.1007/s11011-016-9903-1. Epub 2016 Sep 15.
12 Expression and role of oncogenic miRNA-224 in esophageal squamous cell carcinoma.BMC Cancer. 2015 Aug 6;15:575. doi: 10.1186/s12885-015-1581-6.
13 Leptin signaling impairs macrophage defenses against Salmonella Typhimurium.Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16551-16560. doi: 10.1073/pnas.1904885116. Epub 2019 Jul 26.
14 miR-190 promotes HCC proliferation and metastasis by targeting PHLPP1.Exp Cell Res. 2018 Oct 1;371(1):185-195. doi: 10.1016/j.yexcr.2018.08.008. Epub 2018 Aug 6.
15 PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum.Cell Death Differ. 2010 Feb;17(2):324-35. doi: 10.1038/cdd.2009.127. Epub 2009 Sep 11.
16 Aberrant expression of PHLPP1 and PHLPP2 correlates with poor prognosis in patients with hypopharyngeal squamous cell carcinoma.PLoS One. 2015 Mar 20;10(3):e0119405. doi: 10.1371/journal.pone.0119405. eCollection 2015.
17 Phlpp1 is associated with human intervertebral disc degeneration and its deficiency promotes healing after needle puncture injury in mice.Cell Death Dis. 2019 Oct 3;10(10):754. doi: 10.1038/s41419-019-1985-3.
18 High PHLPP1 expression levels predicts longer time of acquired resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma.Oncotarget. 2017 Aug 1;8(35):59000-59007. doi: 10.18632/oncotarget.19777. eCollection 2017 Aug 29.
19 USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells.J Cancer Res Clin Oncol. 2012 Jul;138(7):1231-8. doi: 10.1007/s00432-012-1193-3. Epub 2012 Mar 20.
20 MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2.FEBS Lett. 2014 Aug 25;588(17):3055-61. doi: 10.1016/j.febslet.2014.06.020. Epub 2014 Jun 16.
21 Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance.Diabetologia. 2011 Jul;54(7):1879-87. doi: 10.1007/s00125-011-2116-6. Epub 2011 Apr 1.
22 Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis.J Orthop Res. 2018 May;36(5):1487-1497. doi: 10.1002/jor.23781. Epub 2017 Nov 28.
23 Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.Mol Cancer. 2016 Dec 12;15(1):81. doi: 10.1186/s12943-016-0567-6.
24 Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling.J Biol Chem. 2012 Feb 3;287(6):3610-6. doi: 10.1074/jbc.R111.318675. Epub 2011 Dec 5.
25 Tumor necrosis factor-alpha upregulated PHLPP1 through activating nuclear factor-kappa B during myocardial ischemia/reperfusion.Life Sci. 2018 Aug 15;207:355-363. doi: 10.1016/j.lfs.2018.06.023. Epub 2018 Jun 22.
26 LncRNA PCAT1 activates AKT and NF-B signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKK complex.Nucleic Acids Res. 2019 May 7;47(8):4211-4225. doi: 10.1093/nar/gkz108.
27 SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling.Oncotarget. 2017 Mar 21;8(12):19980-19996. doi: 10.18632/oncotarget.15301.
28 PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells.Oncotarget. 2016 Feb 16;7(7):7801-15. doi: 10.18632/oncotarget.6848.
29 The tuberous sclerosis complex subunit TBC1D7 is stabilized by Akt phosphorylation-mediated 14-3-3 binding.J Biol Chem. 2018 Oct 19;293(42):16142-16159. doi: 10.1074/jbc.RA118.003525. Epub 2018 Aug 24.
30 PHLPPing through history: a decade in the life of PHLPP phosphatases.Biochem Soc Trans. 2016 Dec 15;44(6):1675-1682. doi: 10.1042/BST20160170.
31 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
32 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
33 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
34 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
35 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
36 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
37 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
38 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
39 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.