General Information of Drug Off-Target (DOT) (ID: OTJJCVG1)

DOT Name Alpha-(1,6)-fucosyltransferase (FUT8)
Synonyms
Alpha1-6FucT; EC 2.4.1.68; Fucosyltransferase 8; GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1,6-fucosyltransferase; GDP-fucose--glycoprotein fucosyltransferase; Glycoprotein 6-alpha-L-fucosyltransferase
Gene Name FUT8
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Acute erythroid leukemia ( )
Adenoma ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Brain disease ( )
Castration-resistant prostate carcinoma ( )
Colorectal carcinoma ( )
Congenital disorder of glycosylation ( )
Congenital disorder of glycosylation with defective fucosylation ( )
Congenital disorder of glycosylation with defective fucosylation 1 ( )
Congenital glaucoma ( )
Diabetic kidney disease ( )
Epithelial ovarian cancer ( )
Glaucoma/ocular hypertension ( )
Hepatitis ( )
Hepatitis A virus infection ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Intellectual disability ( )
Juvenile open angle glaucoma ( )
Lung carcinoma ( )
Neoplasm ( )
Oral cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Pulmonary emphysema ( )
Pulmonary fibrosis ( )
Renal fibrosis ( )
Schizophrenia ( )
Chronic obstructive pulmonary disease ( )
Lung cancer ( )
Non-small-cell lung cancer ( )
Melanoma ( )
Metastatic malignant neoplasm ( )
Metastatic melanoma ( )
Nervous system inflammation ( )
Pancreatic ductal carcinoma ( )
UniProt ID
FUT8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DE0; 6VLD; 6VLE; 6X5H; 6X5R; 6X5S; 6X5T; 6X5U
EC Number
2.4.1.68
Pfam ID
PF19745 ; PF14604
Sequence
MRPWTGSWRWIMLILFAWGTLLFYIGGHLVRDNDHPDHSSRELSKILAKLERLKQQNEDL
RRMAESLRIPEGPIDQGPAIGRVRVLEEQLVKAKEQIENYKKQTRNGLGKDHEILRRRIE
NGAKELWFFLQSELKKLKNLEGNELQRHADEFLLDLGHHERSIMTDLYYLSQTDGAGDWR
EKEAKDLTELVQRRITYLQNPKDCSKAKKLVCNINKGCGYGCQLHHVVYCFMIAYGTQRT
LILESQNWRYATGGWETVFRPVSETCTDRSGISTGHWSGEVKDKNVQVVELPIVDSLHPR
PPYLPLAVPEDLADRLVRVHGDPAVWWVSQFVKYLIRPQPWLEKEIEEATKKLGFKHPVI
GVHVRRTDKVGTEAAFHPIEEYMVHVEEHFQLLARRMQVDKKRVYLATDDPSLLKEAKTK
YPNYEFISDNSISWSAGLHNRYTENSLRGVILDIHFLSQADFLVCTFSSQVCRVAYEIMQ
TLHPDASANFHSLDDIYYFGGQNAHNQIAIYAHQPRTADEIPMEPGDIIGVAGNHWDGYS
KGVNRKLGRTGLYPSYKVREKIETVKYPTYPEAEK
Function Catalyzes the addition of fucose in alpha 1-6 linkage to the first GlcNAc residue, next to the peptide chains in N-glycans.
KEGG Pathway
N-Glycan biosynthesis (hsa00510 )
Various types of N-glycan biosynthesis (hsa00513 )
Glycosaminoglycan biosynthesis - keratan sulfate (hsa00533 )
Metabolic pathways (hsa01100 )
Transcriptio.l misregulation in cancer (hsa05202 )
Reactome Pathway
Reactions specific to the complex N-glycan synthesis pathway (R-HSA-975578 )
Maturation of spike protein (R-HSA-9694548 )
BioCyc Pathway
MetaCyc:HS00491-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

40 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Definitive Biomarker [1]
Breast carcinoma DIS2UE88 Definitive Biomarker [1]
Acute erythroid leukemia DISZFC1O Strong Altered Expression [2]
Adenoma DIS78ZEV Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Arteriosclerosis DISK5QGC Strong Biomarker [4]
Atherosclerosis DISMN9J3 Strong Biomarker [4]
Brain disease DIS6ZC3X Strong Biomarker [5]
Castration-resistant prostate carcinoma DISVGAE6 Strong Altered Expression [6]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [7]
Congenital disorder of glycosylation DIS400QP Strong Biomarker [8]
Congenital disorder of glycosylation with defective fucosylation DIS5PFT2 Strong Genetic Variation [9]
Congenital disorder of glycosylation with defective fucosylation 1 DIS3HJ60 Strong Autosomal recessive [10]
Congenital glaucoma DISHN3GO Strong Genetic Variation [8]
Diabetic kidney disease DISJMWEY Strong Biomarker [11]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [12]
Glaucoma/ocular hypertension DISLBXBY Strong Biomarker [8]
Hepatitis DISXXX35 Strong Altered Expression [13]
Hepatitis A virus infection DISUMFQV Strong Altered Expression [13]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Intellectual disability DISMBNXP Strong Biomarker [16]
Juvenile open angle glaucoma DISZ43T5 Strong Genetic Variation [8]
Lung carcinoma DISTR26C Strong Biomarker [17]
Neoplasm DISZKGEW Strong Altered Expression [7]
Oral cancer DISLD42D Strong Altered Expression [18]
Prostate cancer DISF190Y Strong Altered Expression [6]
Prostate carcinoma DISMJPLE Strong Altered Expression [6]
Pulmonary emphysema DIS5M7HZ Strong Altered Expression [19]
Pulmonary fibrosis DISQKVLA Strong Biomarker [20]
Renal fibrosis DISMHI3I Strong Altered Expression [21]
Schizophrenia DISSRV2N Strong Altered Expression [22]
Chronic obstructive pulmonary disease DISQCIRF moderate Altered Expression [19]
Lung cancer DISCM4YA moderate Biomarker [17]
Non-small-cell lung cancer DIS5Y6R9 moderate Altered Expression [23]
Melanoma DIS1RRCY Limited Biomarker [24]
Metastatic malignant neoplasm DIS86UK6 Limited Biomarker [23]
Metastatic melanoma DISSL43L Limited Altered Expression [24]
Nervous system inflammation DISB3X5A Limited Biomarker [25]
Pancreatic ductal carcinoma DIS26F9Q Limited Altered Expression [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved Alpha-(1,6)-fucosyltransferase (FUT8) affects the response to substance of Temozolomide. [46]
Etoposide DMNH3PG Approved Alpha-(1,6)-fucosyltransferase (FUT8) affects the response to substance of Etoposide. [47]
DTI-015 DMXZRW0 Approved Alpha-(1,6)-fucosyltransferase (FUT8) affects the response to substance of DTI-015. [46]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [27]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [28]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [29]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [30]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [31]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [32]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [33]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [35]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [36]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [37]
Menadione DMSJDTY Approved Menadione affects the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [38]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [40]
Pyridoxal Phosphate DMO2K0J Approved Pyridoxal Phosphate decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [42]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [44]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Alpha-(1,6)-fucosyltransferase (FUT8). [45]
Guanosine-5'-Triphosphate DMV2OJX Investigative Guanosine-5'-Triphosphate decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
Iodoacetamide DMM4XVL Investigative Iodoacetamide decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
Phenylglyoxal DMHW93J Investigative Phenylglyoxal decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
Guanosine-5'-Diphosphate DM0MUKQ Investigative Guanosine-5'-Diphosphate decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
Guanosine-5'-Monophosphate DM3SLZK Investigative Guanosine-5'-Monophosphate decreases the activity of Alpha-(1,6)-fucosyltransferase (FUT8). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Alpha-(1,6)-fucosyltransferase (FUT8). [34]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of Alpha-(1,6)-fucosyltransferase (FUT8). [39]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Alpha-(1,6)-fucosyltransferase (FUT8). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Alpha-(1,6)-fucosyltransferase (FUT8). [39]
------------------------------------------------------------------------------------

References

1 Fucosyltransferase 8 deficiency suppresses breast cancer cell migration by interference of the FAK/integrin pathway.Cancer Biomark. 2019;25(4):303-311. doi: 10.3233/CBM-190209.
2 -1,6-Fucosyltransferase (FUT8) inhibits hemoglobin production during differentiation of murine and K562 human erythroleukemia cells.J Biol Chem. 2013 Jun 7;288(23):16839-16847. doi: 10.1074/jbc.M113.459594. Epub 2013 Apr 22.
3 Fucosylation is associated with the malignant transformation of intraductal papillary mucinous neoplasms: a lectin microarray-based study.Surg Today. 2016 Oct;46(10):1217-23. doi: 10.1007/s00595-015-1299-8. Epub 2016 Jan 11.
4 Lysophosphatidic acid decreased macrophage foam cell migration correlated with downregulation of fucosyltransferase 8 via HNF1.Atherosclerosis. 2019 Nov;290:19-30. doi: 10.1016/j.atherosclerosis.2019.09.001. Epub 2019 Sep 11.
5 Deficiency of 1,6-fucosyltransferase promotes neuroinflammation by increasing the sensitivity of glial cells to inflammatory mediators.Biochim Biophys Acta Gen Subj. 2019 Mar;1863(3):598-608. doi: 10.1016/j.bbagen.2018.12.008. Epub 2018 Dec 17.
6 Overexpression of (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells.Prostate Cancer Prostatic Dis. 2018 Apr;21(1):137-146. doi: 10.1038/s41391-017-0016-7. Epub 2018 Jan 16.
7 Prognostic role of FUT8 expression in relation to p53 status in stage II and III colorectal cancer.PLoS One. 2018 Jul 5;13(7):e0200315. doi: 10.1371/journal.pone.0200315. eCollection 2018.
8 Childhood glaucoma in association with congenital disorder of glycosylation caused by mutations in fucosyltransferase 8.J AAPOS. 2019 Dec;23(6):351-352. doi: 10.1016/j.jaapos.2019.08.272. Epub 2019 Sep 30.
9 Autozygome and high throughput confirmation of disease genes candidacy. Genet Med. 2019 Mar;21(3):736-742. doi: 10.1038/s41436-018-0138-x. Epub 2018 Sep 21.
10 Biallelic Mutations in FUT8 Cause a Congenital Disorder of Glycosylation with Defective Fucosylation. Am J Hum Genet. 2018 Jan 4;102(1):188-195. doi: 10.1016/j.ajhg.2017.12.009.
11 Inhibition of core fucosylation limits progression of diabetic kidney disease.Biochem Biophys Res Commun. 2019 Dec 10;520(3):612-618. doi: 10.1016/j.bbrc.2019.10.037. Epub 2019 Oct 14.
12 Core fucosylation of copper transporter 1 plays a crucial role in cisplatin-resistance of epithelial ovarian cancer by regulating drug uptake.Mol Carcinog. 2019 May;58(5):794-807. doi: 10.1002/mc.22971. Epub 2019 Jan 21.
13 The alpha1-6-fucosyltransferase gene and its biological significance.Biochim Biophys Acta. 1999 Dec 6;1473(1):9-20. doi: 10.1016/s0304-4165(99)00166-x.
14 Hepatitis C Virus-Induced FUT8 Causes 5-FU Drug Resistance in Human Hepatoma Huh7.5.1 Cells.Viruses. 2019 Apr 24;11(4):378. doi: 10.3390/v11040378.
15 Activated p53 with Histone Deacetylase Inhibitor Enhances L-Fucose-Mediated Drug Delivery through Induction of Fucosyltransferase 8 Expression in Hepatocellular Carcinoma Cells.PLoS One. 2016 Dec 15;11(12):e0168355. doi: 10.1371/journal.pone.0168355. eCollection 2016.
16 Core fucosylation of N-linked glycans in leukocyte adhesion deficiency/congenital disorder of glycosylation IIc fibroblasts.Glycobiology. 2005 Oct;15(10):924-34. doi: 10.1093/glycob/cwi081. Epub 2005 May 25.
17 An integromic signature for lung cancer early detection.Oncotarget. 2018 May 15;9(37):24684-24692. doi: 10.18632/oncotarget.25227. eCollection 2018 May 15.
18 Glycoproteomic identification of novel plasma biomarkers for oral cancer.J Food Drug Anal. 2019 Apr;27(2):483-493. doi: 10.1016/j.jfda.2018.12.008. Epub 2019 Jan 8.
19 1,6-Fucosyltransferase (Fut8) is implicated in vulnerability to elastase-induced emphysema in mice and a possible non-invasive predictive marker for disease progression and exacerbations in chronic obstructive pulmonary disease (COPD).Biochem Biophys Res Commun. 2012 Jul 20;424(1):112-7. doi: 10.1016/j.bbrc.2012.06.081. Epub 2012 Jun 23.
20 The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis.Int J Biochem Cell Biol. 2019 Dec;117:105639. doi: 10.1016/j.biocel.2019.105639. Epub 2019 Oct 24.
21 Inhibition of TGF-1-receptor posttranslational core fucosylation attenuates rat renal interstitial fibrosis.Kidney Int. 2013 Jul;84(1):64-77. doi: 10.1038/ki.2013.82. Epub 2013 Mar 13.
22 Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia.Schizophr Res. 2017 Apr;182:66-73. doi: 10.1016/j.schres.2016.10.024. Epub 2016 Oct 20.
23 MicroRNA-198-5p inhibits the migration and invasion of non-small lung cancer cells by targeting fucosyltransferase 8.Clin Exp Pharmacol Physiol. 2019 Oct;46(10):955-967. doi: 10.1111/1440-1681.13154. Epub 2019 Aug 30.
24 A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis.Cancer Cell. 2017 Jun 12;31(6):804-819.e7. doi: 10.1016/j.ccell.2017.05.007.
25 Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation.Front Immunol. 2018 Jan 29;9:78. doi: 10.3389/fimmu.2018.00078. eCollection 2018.
26 Clinicopathological and prognostic significance of MUC13 and AGR2 expression in intraductal papillary mucinous neoplasms of the pancreas.Pancreatology. 2018 Jun;18(4):407-412. doi: 10.1016/j.pan.2018.04.003. Epub 2018 Apr 3.
27 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
28 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
29 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
30 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
31 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
32 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
33 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
34 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
37 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
38 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
39 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
40 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
41 Chemical modifications of alpha1,6-fucosyltransferase define amino acid residues of catalytic importance. Biochimie. 2003 Mar-Apr;85(3-4):303-10. doi: 10.1016/s0300-9084(03)00074-9.
42 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
45 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
46 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.
47 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.