General Information of Drug Off-Target (DOT) (ID: OTRMQTMZ)

DOT Name Disabled homolog 2 (DAB2)
Synonyms Adaptor molecule disabled-2; Differentially expressed in ovarian carcinoma 2; DOC-2; Differentially-expressed protein 2
Gene Name DAB2
Related Disease
Breast neoplasm ( )
Carcinoma of esophagus ( )
Chronic renal failure ( )
Esophageal cancer ( )
Hyperglycemia ( )
Neoplasm of esophagus ( )
Adenocarcinoma ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Breast cancer ( )
Colitis ( )
Colorectal carcinoma ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Gastric cancer ( )
Huntington disease ( )
Lung adenocarcinoma ( )
Lung neoplasm ( )
Matthew-Wood syndrome ( )
Nasopharyngeal carcinoma ( )
Nephropathy ( )
Non-small-cell lung cancer ( )
Pancreatic cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Stomach cancer ( )
Transitional cell carcinoma ( )
Type-1/2 diabetes ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Urothelial carcinoma ( )
Carcinoma ( )
Cervical carcinoma ( )
High blood pressure ( )
Lung cancer ( )
Lung carcinoma ( )
Metabolic acidosis ( )
Squamous cell carcinoma ( )
Bone osteosarcoma ( )
Breast carcinoma ( )
Choriocarcinoma ( )
Chronic kidney disease ( )
Hepatocellular carcinoma ( )
Myocardial infarction ( )
Osteosarcoma ( )
UniProt ID
DAB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LSW; 6O5O; 6OVF
Pfam ID
PF21792 ; PF00640
Sequence
MSNEVETSATNGQPDQQAAPKAPSKKEKKKGPEKTDEYLLARFKGDGVKYKAKLIGIDDV
PDARGDKMSQDSMMKLKGMAAAGRSQGQHKQRIWVNISLSGIKIIDEKTGVIEHEHPVNK
ISFIARDVTDNRAFGYVCGGEGQHQFFAIKTGQQAEPLVVDLKDLFQVIYNVKKKEEEKK
KIEEASKAVENGSEALMILDDQTNKLKSGVDQMDLFGDMSTPPDLNSPTESKDILLVDLN
SEIDTNQNSLRENPFLTNGITSCSLPRPTPQASFLPENAFSANLNFFPTPNPDPFRDDPF
TQPDQSTPSSFDSLKSPDQKKENSSSSSTPLSNGPLNGDVDYFGQQFDQISNRTGKQEAQ
AGPWPFSSSQTQPAVRTQNGVSEREQNGFSVKSSPNPFVGSPPKGLSIQNGVKQDLESSV
QSSPHDSIAIIPPPQSTKPGRGRRTAKSSANDLLASDIFAPPVSEPSGQASPTGQPTALQ
PNPLDLFKTSAPAPVGPLVGLGGVTVTLPQAGPWNTASLVFNQSPSMAPGAMMGGQPSGF
SQPVIFGTSPAVSGWNQPSPFAASTPPPVPVVWGPSASVAPNAWSTTSPLGNPFQSNIFP
APAVSTQPPSMHSSLLVTPPQPPPRAGPPKDISSDAFTALDPLGDKEIKDVKEMFKDFQL
RQPPAVPARKGEQTSSGTLSAFASYFNSKVGIPQENADHDDFDANQLLNKINEPPKPAPR
QVSLPVTKSTDNAFENPFFKDSFGSSQASVASSQPVSSEMYRDPFGNPFA
Function
Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor.
Tissue Specificity
Expressed in deep invaginations, inclusion cysts and the surface epithelial cells of the ovary. Also expressed in breast epithelial cells, spleen, thymus, prostate, testis, macrophages, fibroblasts, lung epithelial cells, placenta, brain stem, heart and small intestine. Expressed in kidney proximal tubular epithelial cells (at protein level).
KEGG Pathway
Endocytosis (hsa04144 )
Reactome Pathway
Formation of annular gap junctions (R-HSA-196025 )
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
Gap junction degradation (R-HSA-190873 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast neoplasm DISNGJLM Definitive Biomarker [1]
Carcinoma of esophagus DISS6G4D Definitive Altered Expression [2]
Chronic renal failure DISGG7K6 Definitive Genetic Variation [3]
Esophageal cancer DISGB2VN Definitive Altered Expression [2]
Hyperglycemia DIS0BZB5 Definitive Altered Expression [4]
Neoplasm of esophagus DISOLKAQ Definitive Altered Expression [2]
Adenocarcinoma DIS3IHTY Strong Biomarker [5]
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Arteriosclerosis DISK5QGC Strong Biomarker [6]
Atherosclerosis DISMN9J3 Strong Biomarker [6]
Bladder cancer DISUHNM0 Strong Altered Expression [7]
Breast cancer DIS7DPX1 Strong Biomarker [1]
Colitis DISAF7DD Strong Biomarker [8]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [9]
Endometrial cancer DISW0LMR Strong Biomarker [10]
Endometrial carcinoma DISXR5CY Strong Biomarker [10]
Gastric cancer DISXGOUK Strong Biomarker [11]
Huntington disease DISQPLA4 Strong Altered Expression [12]
Lung adenocarcinoma DISD51WR Strong Biomarker [13]
Lung neoplasm DISVARNB Strong Altered Expression [14]
Matthew-Wood syndrome DISA7HR7 Strong Altered Expression [15]
Nasopharyngeal carcinoma DISAOTQ0 Strong Biomarker [16]
Nephropathy DISXWP4P Strong Biomarker [17]
Non-small-cell lung cancer DIS5Y6R9 Strong Posttranslational Modification [18]
Pancreatic cancer DISJC981 Strong Biomarker [15]
Prostate cancer DISF190Y Strong Biomarker [19]
Prostate carcinoma DISMJPLE Strong Biomarker [19]
Prostate neoplasm DISHDKGQ Strong Biomarker [20]
Stomach cancer DISKIJSX Strong Biomarker [11]
Transitional cell carcinoma DISWVVDR Strong Altered Expression [21]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [22]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [7]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [7]
Urothelial carcinoma DISRTNTN Strong Altered Expression [21]
Carcinoma DISH9F1N moderate Posttranslational Modification [23]
Cervical carcinoma DIST4S00 moderate Biomarker [24]
High blood pressure DISY2OHH moderate Biomarker [25]
Lung cancer DISCM4YA moderate Biomarker [26]
Lung carcinoma DISTR26C moderate Biomarker [26]
Metabolic acidosis DIS7UMEC moderate Biomarker [27]
Squamous cell carcinoma DISQVIFL moderate Biomarker [28]
Bone osteosarcoma DIST1004 Limited Biomarker [29]
Breast carcinoma DIS2UE88 Limited Biomarker [1]
Choriocarcinoma DISDBVNL Limited Biomarker [30]
Chronic kidney disease DISW82R7 Limited Biomarker [17]
Hepatocellular carcinoma DIS0J828 Limited Biomarker [31]
Myocardial infarction DIS655KI Limited Biomarker [32]
Osteosarcoma DISLQ7E2 Limited Biomarker [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Disabled homolog 2 (DAB2) decreases the response to substance of Cisplatin. [60]
Etoposide DMNH3PG Approved Disabled homolog 2 (DAB2) affects the response to substance of Etoposide. [61]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Disabled homolog 2 (DAB2). [33]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Disabled homolog 2 (DAB2). [34]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Disabled homolog 2 (DAB2). [35]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Disabled homolog 2 (DAB2). [36]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Disabled homolog 2 (DAB2). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Disabled homolog 2 (DAB2). [38]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Disabled homolog 2 (DAB2). [39]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Disabled homolog 2 (DAB2). [40]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Disabled homolog 2 (DAB2). [41]
Triclosan DMZUR4N Approved Triclosan increases the expression of Disabled homolog 2 (DAB2). [42]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Disabled homolog 2 (DAB2). [43]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Disabled homolog 2 (DAB2). [44]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Disabled homolog 2 (DAB2). [45]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Disabled homolog 2 (DAB2). [46]
Clozapine DMFC71L Approved Clozapine increases the expression of Disabled homolog 2 (DAB2). [47]
Exemestane DM9HPW3 Approved Exemestane increases the expression of Disabled homolog 2 (DAB2). [48]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Disabled homolog 2 (DAB2). [49]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Disabled homolog 2 (DAB2). [51]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Disabled homolog 2 (DAB2). [52]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Disabled homolog 2 (DAB2). [53]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Disabled homolog 2 (DAB2). [56]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Disabled homolog 2 (DAB2). [57]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Disabled homolog 2 (DAB2). [58]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Avastin+/-Tarceva DMA86FL Phase 3 Avastin+/-Tarceva affects the phosphorylation of Disabled homolog 2 (DAB2). [50]
R-roscovitine DMSH108 Phase 2 R-roscovitine decreases the phosphorylation of Disabled homolog 2 (DAB2). [50]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Disabled homolog 2 (DAB2). [54]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Disabled homolog 2 (DAB2). [55]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Disabled homolog 2 (DAB2). [59]
Okadaic acid DM47CO1 Investigative Okadaic acid affects the phosphorylation of Disabled homolog 2 (DAB2). [50]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

References

1 miR-191/DAB2 axis regulates the tumorigenicity of estrogen receptor-positive breast cancer.IUBMB Life. 2018 Jan;70(1):71-80. doi: 10.1002/iub.1705. Epub 2017 Dec 16.
2 Loss of disabled-2 expression is an early event in esophageal squamous tumorigenesis.World J Gastroenterol. 2006 Oct 7;12(37):6041-5. doi: 10.3748/wjg.v12.i37.6041.
3 A catalog of genetic loci associated with kidney function from analyses of a million individuals.Nat Genet. 2019 Jun;51(6):957-972. doi: 10.1038/s41588-019-0407-x. Epub 2019 May 31.
4 MicroRNA-145 regulates disabled-2 and Wnt3a expression in cardiomyocytes under hyperglycaemia.Eur J Clin Invest. 2018 Jan;48(1). doi: 10.1111/eci.12867. Epub 2017 Dec 8.
5 Identification of DAB2 and Intelectin-1 as Novel Positive Immunohistochemical Markers of Epithelioid Mesothelioma by Transcriptome Microarray Analysis for Its Differentiation From Pulmonary Adenocarcinoma.Am J Surg Pathol. 2017 Aug;41(8):1045-1052. doi: 10.1097/PAS.0000000000000852.
6 Deficiency of Dab2 (Disabled Homolog 2) in Myeloid Cells Exacerbates Inflammation in Liver and Atherosclerotic Plaques in LDLR (Low-Density Lipoprotein Receptor)-Null Mice-Brief Report.Arterioscler Thromb Vasc Biol. 2018 May;38(5):1020-1029. doi: 10.1161/ATVBAHA.117.310467. Epub 2018 Mar 29.
7 Estrogen receptor promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals.Exp Mol Med. 2018 Nov 20;50(11):1-11. doi: 10.1038/s12276-018-0155-5.
8 Rapid Downregulation of DAB2 by Toll-Like Receptor Activation Contributes to a Pro-Inflammatory Switch in Activated Dendritic Cells.Front Immunol. 2019 Feb 27;10:304. doi: 10.3389/fimmu.2019.00304. eCollection 2019.
9 DAB2IP with tumor-inhibiting activities exhibits frameshift mutations in gastrointestinal cancers.Pathol Res Pract. 2018 Dec;214(12):2075-2080. doi: 10.1016/j.prp.2018.10.005. Epub 2018 Oct 19.
10 Expression and clinical significance of the transforming growth factor- signalling pathway in endometrial cancer.Histopathology. 2011 Jul;59(1):63-72. doi: 10.1111/j.1365-2559.2011.03892.x.
11 Discovery of signature genes in gastric cancer associated with prognosis.Neoplasma. 2016;63(2):239-45. doi: 10.4149/209_150531N303.
12 Transcriptomics of maternal and fetal membranes can discriminate between gestational-age matched preterm neonates with and without cognitive impairment diagnosed at 18-24 months.PLoS One. 2015 Mar 30;10(3):e0118573. doi: 10.1371/journal.pone.0118573. eCollection 2015.
13 miR-134-5p Promotes Stage I Lung Adenocarcinoma Metastasis and Chemoresistance by Targeting DAB2.Mol Ther Nucleic Acids. 2019 Dec 6;18:627-637. doi: 10.1016/j.omtn.2019.09.025. Epub 2019 Oct 3.
14 miR-93-directed downregulation of DAB2 defines a novel oncogenic pathway in lung cancer.Oncogene. 2014 Aug 21;33(34):4307-15. doi: 10.1038/onc.2013.381. Epub 2013 Sep 16.
15 Loss of Disabled-2 Expression in Pancreatic Cancer Progression.Sci Rep. 2019 May 17;9(1):7532. doi: 10.1038/s41598-019-43992-z.
16 MicroRNA-93 promotes cell growth and invasion in nasopharyngeal carcinoma by targeting disabled homolog-2.Cancer Lett. 2015 Jul 28;363(2):146-55. doi: 10.1016/j.canlet.2015.04.006. Epub 2015 Apr 16.
17 Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells.FASEB J. 2019 Jan;33(1):821-832. doi: 10.1096/fj.201800392RR. Epub 2018 Jul 27.
18 Aberrant Hypermethylation at Sites -86 to 226 of DAB2 Gene in Non-Small Cell Lung Cancer.Am J Med Sci. 2015 May;349(5):425-31. doi: 10.1097/MAJ.0000000000000436.
19 MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression.Int J Biol Macromol. 2019 Mar 15;125:557-565. doi: 10.1016/j.ijbiomac.2018.12.088. Epub 2018 Dec 10.
20 The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2.J Biol Chem. 2002 Apr 12;277(15):12622-31. doi: 10.1074/jbc.M110568200. Epub 2002 Jan 25.
21 Loss of DAB2IP expression in human urothelial carcinoma is associated with poorer recurrence-free survival.Virchows Arch. 2016 Jun;468(6):733-40. doi: 10.1007/s00428-016-1924-y. Epub 2016 Mar 22.
22 Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program.Nat Commun. 2019 Aug 26;10(1):3842. doi: 10.1038/s41467-019-11704-w.
23 Frequent methylation of DAB2, a Wnt pathway antagonist, in oral and oropharyngeal squamous cell carcinomas.Pathol Res Pract. 2018 Feb;214(2):314-317. doi: 10.1016/j.prp.2017.12.010. Epub 2017 Dec 14.
24 MicroRNA-106b is involved in transforming growth factor 1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma.J Exp Clin Cancer Res. 2016 Jan 15;35:11. doi: 10.1186/s13046-016-0290-6.
25 Expression and Histopathological Significance of Disabled-2 in Aldosterone-Producing Adenoma.Horm Metab Res. 2017 Jul;49(7):520-526. doi: 10.1055/s-0043-100935. Epub 2017 May 17.
26 X-ray irradiation induced Disabled-2 gene promoter de-methylation enhances radiosensitivity of non-small-cell lung carcinoma cells.J Exp Clin Cancer Res. 2018 Dec 14;37(1):315. doi: 10.1186/s13046-018-1000-3.
27 Proteomic profiling of the effect of metabolic acidosis on the apical membrane of the proximal convoluted tubule.Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1465-77. doi: 10.1152/ajprenal.00390.2011. Epub 2012 Feb 22.
28 Epigenetic downregulation of human disabled homolog 2 switches TGF-beta from a tumor suppressor to a tumor promoter.J Clin Invest. 2010 Aug;120(8):2842-57. doi: 10.1172/JCI36125. Epub 2010 Jul 1.
29 Disabled homolog 2 interactive protein functions as a tumor suppressor in osteosarcoma cells.Oncol Lett. 2018 Jul;16(1):703-712. doi: 10.3892/ol.2018.8776. Epub 2018 May 22.
30 Doc-2/hDab2 expression is up-regulated in primary pancreatic cancer but reduced in metastasis.Lab Invest. 2001 Jun;81(6):863-73. doi: 10.1038/labinvest.3780295.
31 miR-106b targets DAB2 to promote hepatocellular carcinoma cell proliferation and metastasis.Oncol Lett. 2018 Sep;16(3):3063-3069. doi: 10.3892/ol.2018.8970. Epub 2018 Jun 15.
32 miR-145 is differentially regulated by TGF-1 and ischaemia and targets Disabled-2 expression and wnt/-catenin activity.J Cell Mol Med. 2012 May;16(5):1106-13. doi: 10.1111/j.1582-4934.2011.01385.x.
33 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
34 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
35 Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells. 2007 Mar;25(3):771-8. doi: 10.1634/stemcells.2006-0271. Epub 2006 Nov 30.
36 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
37 Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem Toxicol. 2017 Oct;108(Pt A):30-42.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
40 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
41 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
42 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
43 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
44 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
45 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
46 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
47 Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods. 2023 Jun;33(5):401-410. doi: 10.1080/15376516.2022.2156005. Epub 2022 Dec 19.
48 Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone. 2007 Apr;40(4):876-87. doi: 10.1016/j.bone.2006.11.029. Epub 2006 Dec 28.
49 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
50 Cell cycle-dependent phosphorylation of Disabled-2 by cdc2. Oncogene. 2003 Jul 17;22(29):4524-30. doi: 10.1038/sj.onc.1206767.
51 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
52 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
53 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
54 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
55 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
56 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
57 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
58 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
59 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
60 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.
61 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.