General Information of Drug Off-Target (DOT) (ID: OTSGJ8SV)

DOT Name Probable global transcription activator SNF2L2 (SMARCA2)
Synonyms
EC 3.6.4.-; ATP-dependent helicase SMARCA2; BRG1-associated factor 190B; BAF190B; Protein brahma homolog; hBRM; SNF2-alpha; SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2
Gene Name SMARCA2
Related Disease
Acute myelogenous leukaemia ( )
Coffin-Siris syndrome 1 ( )
Intellectual disability-sparse hair-brachydactyly syndrome ( )
Small-cell lung cancer ( )
Adult glioblastoma ( )
Astrocytoma ( )
Autism ( )
Breast neoplasm ( )
Carcinoma of esophagus ( )
Coffin-Siris syndrome ( )
Endometrial carcinoma ( )
Esophageal cancer ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Head and neck cancer ( )
Head and neck carcinoma ( )
Head-neck squamous cell carcinoma ( )
Hepatitis C virus infection ( )
Intellectual disability ( )
Liver cirrhosis ( )
Lung neoplasm ( )
Malignant mesothelioma ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Neurodevelopmental disorder ( )
Obesity ( )
Prostate cancer ( )
Prostate neoplasm ( )
Schimke immuno-osseous dysplasia ( )
Skin cancer ( )
Squamous cell carcinoma ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Movement disorder ( )
Non-small-cell lung cancer ( )
Alpha thalassemia-X-linked intellectual disability syndrome ( )
Aplasia cutis congenita ( )
Autism spectrum disorder ( )
Carcinoma ( )
Chronic renal failure ( )
Clear cell renal carcinoma ( )
Corpus callosum, agenesis of ( )
End-stage renal disease ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Pancreatic cancer ( )
UniProt ID
SMCA2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DAT; 4QY4; 5DKC; 5DKH; 6EG2; 6EG3; 6HAX; 6HAY; 6HAZ; 7S4E; 7Z6L; 7Z76; 7Z77; 7Z78
EC Number
3.6.4.-
Pfam ID
PF07533 ; PF00439 ; PF00271 ; PF07529 ; PF08880 ; PF14619 ; PF00176
Sequence
MSTPTDPGAMPHPGPSPGPGPSPGPILGPSPGPGPSPGSVHSMMGPSPGPPSVSHPMPTM
GSTDFPQEGMHQMHKPIDGIHDKGIVEDIHCGSMKGTGMRPPHPGMGPPQSPMDQHSQGY
MSPHPSPLGAPEHVSSPMSGGGPTPPQMPPSQPGALIPGDPQAMSQPNRGPSPFSPVQLH
QLRAQILAYKMLARGQPLPETLQLAVQGKRTLPGLQQQQQQQQQQQQQQQQQQQQQQQPQ
QQPPQPQTQQQQQPALVNYNRPSGPGPELSGPSTPQKLPVPAPGGRPSPAPPAAAQPPAA
AVPGPSVPQPAPGQPSPVLQLQQKQSRISPIQKPQGLDPVEILQEREYRLQARIAHRIQE
LENLPGSLPPDLRTKATVELKALRLLNFQRQLRQEVVACMRRDTTLETALNSKAYKRSKR
QTLREARMTEKLEKQQKIEQERKRRQKHQEYLNSILQHAKDFKEYHRSVAGKIQKLSKAV
ATWHANTEREQKKETERIEKERMRRLMAEDEEGYRKLIDQKKDRRLAYLLQQTDEYVANL
TNLVWEHKQAQAAKEKKKRRRRKKKAEENAEGGESALGPDGEPIDESSQMSDLPVKVTHT
ETGKVLFGPEAPKASQLDAWLEMNPGYEVAPRSDSEESDSDYEEEDEEEESSRQETEEKI
LLDPNSEEVSEKDAKQIIETAKQDVDDEYSMQYSARGSQSYYTVAHAISERVEKQSALLI
NGTLKHYQLQGLEWMVSLYNNNLNGILADEMGLGKTIQTIALITYLMEHKRLNGPYLIIV
PLSTLSNWTYEFDKWAPSVVKISYKGTPAMRRSLVPQLRSGKFNVLLTTYEYIIKDKHIL
AKIRWKYMIVDEGHRMKNHHCKLTQVLNTHYVAPRRILLTGTPLQNKLPELWALLNFLLP
TIFKSCSTFEQWFNAPFAMTGERVDLNEEETILIIRRLHKVLRPFLLRRLKKEVESQLPE
KVEYVIKCDMSALQKILYRHMQAKGILLTDGSEKDKKGKGGAKTLMNTIMQLRKICNHPY
MFQHIEESFAEHLGYSNGVINGAELYRASGKFELLDRILPKLRATNHRVLLFCQMTSLMT
IMEDYFAFRNFLYLRLDGTTKSEDRAALLKKFNEPGSQYFIFLLSTRAGGLGLNLQAADT
VVIFDSDWNPHQDLQAQDRAHRIGQQNEVRVLRLCTVNSVEEKILAAAKYKLNVDQKVIQ
AGMFDQKSSSHERRAFLQAILEHEEENEEEDEVPDDETLNQMIARREEEFDLFMRMDMDR
RREDARNPKRKPRLMEEDELPSWIIKDDAEVERLTCEEEEEKIFGRGSRQRRDVDYSDAL
TEKQWLRAIEDGNLEEMEEEVRLKKRKRRRNVDKDPAKEDVEKAKKRRGRPPAEKLSPNP
PKLTKQMNAIIDTVINYKDRCNVEKVPSNSQLEIEGNSSGRQLSEVFIQLPSRKELPEYY
ELIRKPVDFKKIKERIRNHKYRSLGDLEKDVMLLCHNAQTFNLEGSQIYEDSIVLQSVFK
SARQKIAKEEESEDESNEEEEEEDEEESESEAKSVKVKIKLNKKDDKGRDKGKGKKRPNR
GKAKPVVSDFDSDEEQDEREQSEGSGTDDE
Function
Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth.
KEGG Pathway
ATP-dependent chromatin remodeling (hsa03082 )
Thermogenesis (hsa04714 )
Hepatocellular carcinoma (hsa05225 )
Reactome Pathway
RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not known (R-HSA-8939243 )
RMTs methylate histone arginines (R-HSA-3214858 )

Molecular Interaction Atlas (MIA) of This DOT

50 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Genetic Variation [1]
Coffin-Siris syndrome 1 DIS95FRP Definitive Autosomal dominant [2]
Intellectual disability-sparse hair-brachydactyly syndrome DISEB2FS Definitive Autosomal dominant [3]
Small-cell lung cancer DISK3LZD Definitive Biomarker [4]
Adult glioblastoma DISVP4LU Strong Biomarker [5]
Astrocytoma DISL3V18 Strong Biomarker [5]
Autism DISV4V1Z Strong Biomarker [6]
Breast neoplasm DISNGJLM Strong Biomarker [7]
Carcinoma of esophagus DISS6G4D Strong Altered Expression [8]
Coffin-Siris syndrome DIS8L03H Strong Genetic Variation [9]
Endometrial carcinoma DISXR5CY Strong Genetic Variation [10]
Esophageal cancer DISGB2VN Strong Altered Expression [8]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [8]
Gastric cancer DISXGOUK Strong Genetic Variation [11]
Glioblastoma multiforme DISK8246 Strong Biomarker [5]
Glioma DIS5RPEH Strong Genetic Variation [5]
Head and neck cancer DISBPSQZ Strong Genetic Variation [12]
Head and neck carcinoma DISOU1DS Strong Genetic Variation [12]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [13]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [14]
Intellectual disability DISMBNXP Strong Biomarker [15]
Liver cirrhosis DIS4G1GX Strong Altered Expression [14]
Lung neoplasm DISVARNB Strong Biomarker [16]
Malignant mesothelioma DISTHJGH Strong Biomarker [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Neoplasm of esophagus DISOLKAQ Strong Altered Expression [8]
Neurodevelopmental disorder DIS372XH Strong Genetic Variation [19]
Obesity DIS47Y1K Strong Biomarker [20]
Prostate cancer DISF190Y Strong Altered Expression [21]
Prostate neoplasm DISHDKGQ Strong Altered Expression [21]
Schimke immuno-osseous dysplasia DISGEL3Z Strong Genetic Variation [22]
Skin cancer DISTM18U Strong Altered Expression [23]
Squamous cell carcinoma DISQVIFL Strong Biomarker [24]
leukaemia DISS7D1V moderate Genetic Variation [25]
Leukemia DISNAKFL moderate Genetic Variation [25]
Lung adenocarcinoma DISD51WR moderate Altered Expression [26]
Movement disorder DISOJJ2D moderate CausalMutation [27]
Non-small-cell lung cancer DIS5Y6R9 moderate Biomarker [18]
Alpha thalassemia-X-linked intellectual disability syndrome DISV7OEV Limited Biomarker [15]
Aplasia cutis congenita DISMDAYM Limited Biomarker [28]
Autism spectrum disorder DISXK8NV Limited Genetic Variation [29]
Carcinoma DISH9F1N Limited Genetic Variation [10]
Chronic renal failure DISGG7K6 Limited Genetic Variation [30]
Clear cell renal carcinoma DISBXRFJ Limited Posttranslational Modification [31]
Corpus callosum, agenesis of DISO9P40 Limited Biomarker [28]
End-stage renal disease DISXA7GG Limited Genetic Variation [30]
Lung cancer DISCM4YA Limited Biomarker [32]
Lung carcinoma DISTR26C Limited Biomarker [32]
Melanoma DIS1RRCY Limited Altered Expression [33]
Pancreatic cancer DISJC981 Limited Biomarker [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 50 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [35]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [36]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [37]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [38]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [39]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [40]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [41]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [42]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [43]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [44]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [45]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [44]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [44]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [46]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [47]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [49]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [50]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [51]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [52]
geraniol DMS3CBD Investigative geraniol decreases the expression of Probable global transcription activator SNF2L2 (SMARCA2). [53]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Probable global transcription activator SNF2L2 (SMARCA2). [48]
------------------------------------------------------------------------------------

References

1 Mutational Landscape and Gene Expression Patterns in Adult Acute Myeloid Leukemias with Monosomy 7 as a Sole Abnormality.Cancer Res. 2017 Jan 1;77(1):207-218. doi: 10.1158/0008-5472.CAN-16-1386. Epub 2016 Oct 26.
2 Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet. 2012 Mar 18;44(4):376-8. doi: 10.1038/ng.2219.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting.Nat Genet. 2019 Apr;51(4):618-626. doi: 10.1038/s41588-019-0363-5. Epub 2019 Mar 11.
5 SWI/SNF gene variants and glioma risk and outcome.Cancer Epidemiol. 2013 Apr;37(2):162-5. doi: 10.1016/j.canep.2012.12.001. Epub 2012 Dec 29.
6 Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.Genome Res. 2017 Apr;27(4):591-600. doi: 10.1101/gr.216309.116. Epub 2017 Mar 22.
7 Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets.J Natl Cancer Inst. 2019 Apr 1;111(4):388-398. doi: 10.1093/jnci/djy110.
8 SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines.Sci Rep. 2019 Aug 12;9(1):11661. doi: 10.1038/s41598-019-48152-x.
9 Patient with anomalous skin pigmentation expands the phenotype of ARID2 loss-of-function disorder, a SWI/SNF-related intellectual disability.Am J Med Genet A. 2019 May;179(5):808-812. doi: 10.1002/ajmg.a.61075. Epub 2019 Mar 5.
10 Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology.Histopathology. 2017 Feb;70(3):359-366. doi: 10.1111/his.13091. Epub 2016 Nov 16.
11 Frequent involvement of chromatin remodeler alterations in gastric field cancerization.Cancer Lett. 2015 Feb 1;357(1):328-338. doi: 10.1016/j.canlet.2014.11.038. Epub 2014 Nov 22.
12 Two BRM promoter insertion polymorphisms increase the risk of early-stage upper aerodigestive tract cancers.Cancer Med. 2014 Apr;3(2):426-33. doi: 10.1002/cam4.201. Epub 2014 Feb 12.
13 Association of two BRM promoter polymorphisms with head and neck squamous cell carcinoma risk.Carcinogenesis. 2013 May;34(5):1012-7. doi: 10.1093/carcin/bgt008. Epub 2013 Jan 15.
14 Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases.Oncotarget. 2015 Aug 21;6(24):20327-44. doi: 10.18632/oncotarget.3972.
15 X-linked -thalassemia with mental retardation is downstream of protein kinase A in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damage?"O'Shea LC. Hensey C."
16 Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer.Clin Cancer Res. 2004 Jul 1;10(13):4314-24. doi: 10.1158/1078-0432.CCR-03-0489.
17 MicroRNA and mRNA features of malignant pleural mesothelioma and benign asbestos-related pleural effusion.Biomed Res Int. 2015;2015:635748. doi: 10.1155/2015/635748. Epub 2015 Feb 1.
18 Targeting of BRM Sensitizes BRG1-Mutant Lung Cancer Cell Lines to Radiotherapy.Mol Cancer Ther. 2019 Mar;18(3):656-666. doi: 10.1158/1535-7163.MCT-18-0067. Epub 2018 Nov 26.
19 New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome.BMC Med Genomics. 2019 Jul 9;12(1):105. doi: 10.1186/s12920-019-0555-y.
20 Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: a population-based cohort study.Int J Obes (Lond). 2009 Oct;33(10):1143-52. doi: 10.1038/ijo.2009.152. Epub 2009 Aug 4.
21 Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers.Prostate. 2007 Feb 1;67(2):203-13. doi: 10.1002/pros.20521.
22 Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.Nucleic Acids Res. 2017 May 5;45(8):4687-4695. doi: 10.1093/nar/gkx147.
23 BRM and BRG1 subunits of the SWI/SNF chromatin remodelling complex are downregulated upon progression of benign skin lesions into invasive tumours.Br J Dermatol. 2011 Jun;164(6):1221-7. doi: 10.1111/j.1365-2133.2011.10267.x. Epub 2011 May 13.
24 SMARCA4 and SMARCA2 deficiency in non-small cell lung cancer: immunohistochemical survey of 316 consecutive specimens.Ann Diagn Pathol. 2017 Feb;26:47-51. doi: 10.1016/j.anndiagpath.2016.10.006. Epub 2016 Oct 20.
25 The roles of SNF2/SWI2 nucleosome remodeling enzymes in blood cell differentiation and leukemia.Biomed Res Int. 2015;2015:347571. doi: 10.1155/2015/347571. Epub 2015 Feb 19.
26 Inactivation of SMARCA2 by promoter hypermethylation drives lung cancer development.Gene. 2019 Mar 1;687:193-199. doi: 10.1016/j.gene.2018.11.032. Epub 2018 Nov 14.
27 Coffin-Siris and Nicolaides-Baraitser syndromes are a common well recognizable cause of intellectual disability.Brain Dev. 2015 May;37(5):527-36. doi: 10.1016/j.braindev.2014.08.009. Epub 2014 Sep 22.
28 Advanced adenoid cystic carcinoma (ACC) is featured by SWI/SNF chromatin remodeling complex aberrations.J Cancer Res Clin Oncol. 2019 Jan;145(1):201-211. doi: 10.1007/s00432-018-2783-5. Epub 2018 Oct 31.
29 Autism spectrum disorder recurrence, resulting of germline mosaicism for a CHD2 gene missense variant.Clin Genet. 2017 Dec;92(6):669-670. doi: 10.1111/cge.13073. Epub 2017 Sep 28.
30 Insights into the renal pathogenesis in Schimke immuno-osseous dysplasia: A renal histological characterization and expression analysis.J Histochem Cytochem. 2015 Jan;63(1):32-44. doi: 10.1369/0022155414558335. Epub 2014 Oct 15.
31 BRM/SMARCA2-negative clear cell renal cell carcinoma is associated with a high percentage of BRM somatic mutations, deletions and promoter methylation.Histopathology. 2017 Apr;70(5):711-721. doi: 10.1111/his.13120. Epub 2017 Jan 9.
32 SWI/SNF-Compromised Cancers Are Susceptible to Bromodomain Inhibitors.Cancer Res. 2019 May 15;79(10):2761-2774. doi: 10.1158/0008-5472.CAN-18-1545. Epub 2019 Mar 15.
33 MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells.PLoS One. 2013;8(1):e54110. doi: 10.1371/journal.pone.0054110. Epub 2013 Jan 17.
34 BRM/SMARCA2 promotes the proliferation and chemoresistance ofpancreatic cancer cells by targeting JAK2/STAT3 signaling.Cancer Lett. 2017 Aug 28;402:213-224. doi: 10.1016/j.canlet.2017.05.006. Epub 2017 Jun 7.
35 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
36 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
37 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
38 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
39 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
40 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
41 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
42 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
43 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
44 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
45 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
46 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
47 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
48 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
49 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
50 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
51 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
52 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
53 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.