General Information of Drug Off-Target (DOT) (ID: OT9ZP02A)

DOT Name Coxsackievirus and adenovirus receptor (CXADR)
Synonyms CAR; hCAR; CVB3-binding protein; Coxsackievirus B-adenovirus receptor; HCVADR
Gene Name CXADR
Related Disease
Dilated cardiomyopathy ( )
Lymphoma, non-Hodgkin, familial ( )
Non-hodgkin lymphoma ( )
Small lymphocytic lymphoma ( )
Acute lymphocytic leukaemia ( )
Adult lymphoma ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Craniosynostosis ( )
Epithelial ovarian cancer ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Immunodeficiency ( )
leukaemia ( )
Liver cancer ( )
Lung carcinoma ( )
Lymphoid leukemia ( )
Lymphoma ( )
Melanoma ( )
Metabolic disorder ( )
Metastatic malignant neoplasm ( )
Neuroblastoma ( )
Obesity ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pediatric lymphoma ( )
Plasma cell myeloma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Brain neoplasm ( )
Childhood acute lymphoblastic leukemia ( )
Lung cancer ( )
Acute myelogenous leukaemia ( )
B-cell lymphoma ( )
B-cell neoplasm ( )
Bone osteosarcoma ( )
Colorectal carcinoma ( )
Leukemia ( )
Matthew-Wood syndrome ( )
Non-small-cell lung cancer ( )
Osteosarcoma ( )
Triple negative breast cancer ( )
Type-1/2 diabetes ( )
UniProt ID
CXAR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1EAJ; 1F5W; 1JEW; 1KAC; 1P69; 1P6A; 1RSF; 2J12; 2J1K; 2NPL; 2W9L; 2WBW; 3J6L; 3J6M; 3J6N; 3J6O; 7DPZ; 7DQ1; 7VXZ; 7VYK; 7VYL; 7VYM; 7W14
Pfam ID
PF13927 ; PF07686
Sequence
MALLLCFVLLCGVVDFARSLSITTPEEMIEKAKGETAYLPCKFTLSPEDQGPLDIEWLIS
PADNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKSGDASINVTNLQLSDIGTYQC
KVKKAPGVANKKIHLVVLVKPSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSD
SQKMPTSWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIA
GAIIGTLLALALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHS
SLGSMSPSNMEGYSKTQYNQVPSEDFERTPQSPTLPPAKVAAPNLSRMGAIPVMIPAQSK
DGSIV
Function
Component of the epithelial apical junction complex that may function as a homophilic cell adhesion molecule and is essential for tight junction integrity. Also involved in transepithelial migration of leukocytes through adhesive interactions with JAML a transmembrane protein of the plasma membrane of leukocytes. The interaction between both receptors also mediates the activation of gamma-delta T-cells, a subpopulation of T-cells residing in epithelia and involved in tissue homeostasis and repair. Upon epithelial CXADR-binding, JAML induces downstream cell signaling events in gamma-delta T-cells through PI3-kinase and MAP kinases. It results in proliferation and production of cytokines and growth factors by T-cells that in turn stimulate epithelial tissues repair; (Microbial infection) Acts as a receptor for adenovirus type C; (Microbial infection) Acts as a receptor for Coxsackievirus B1 to B6.
Tissue Specificity
Expressed in pancreas, brain, heart, small intestine, testis, prostate and at a lower level in liver and lung. Isoform 5 is ubiquitously expressed. Isoform 3 is expressed in heart, lung and pancreas. In skeletal muscle, isoform 1 is found at the neuromuscular junction and isoform 2 is found in blood vessels. In cardiac muscle, isoform 1 and isoform 2 are found at intercalated disks. In heart expressed in subendothelial layers of the vessel wall but not in the luminal endothelial surface. Expression is elevated in hearts with dilated cardiomyopathy.
KEGG Pathway
Virion - Adenovirus (hsa03267 )
Viral myocarditis (hsa05416 )
Reactome Pathway
Cell surface interactions at the vascular wall (R-HSA-202733 )
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (R-HSA-198933 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Dilated cardiomyopathy DISX608J Definitive Altered Expression [1]
Lymphoma, non-Hodgkin, familial DISCXYIZ Definitive Biomarker [2]
Non-hodgkin lymphoma DISS2Y8A Definitive Biomarker [2]
Small lymphocytic lymphoma DIS30POX Definitive Biomarker [3]
Acute lymphocytic leukaemia DISPX75S Strong Biomarker [4]
Adult lymphoma DISK8IZR Strong Genetic Variation [5]
Arteriosclerosis DISK5QGC Strong Biomarker [6]
Atherosclerosis DISMN9J3 Strong Biomarker [6]
Bladder cancer DISUHNM0 Strong Biomarker [7]
Carcinoma DISH9F1N Strong Genetic Variation [8]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [9]
Craniosynostosis DIS6J405 Strong Biomarker [10]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [11]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [12]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Immunodeficiency DIS093I0 Strong Biomarker [14]
leukaemia DISS7D1V Strong Biomarker [15]
Liver cancer DISDE4BI Strong Biomarker [9]
Lung carcinoma DISTR26C Strong Altered Expression [16]
Lymphoid leukemia DIS65TYQ Strong Biomarker [17]
Lymphoma DISN6V4S Strong Biomarker [5]
Melanoma DIS1RRCY Strong Biomarker [18]
Metabolic disorder DIS71G5H Strong Biomarker [9]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [19]
Neuroblastoma DISVZBI4 Strong Genetic Variation [20]
Obesity DIS47Y1K Strong Biomarker [21]
Ovarian cancer DISZJHAP Strong Biomarker [11]
Ovarian neoplasm DISEAFTY Strong Biomarker [11]
Pediatric lymphoma DIS51BK2 Strong Genetic Variation [5]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [22]
Urinary bladder cancer DISDV4T7 Strong Biomarker [7]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [7]
Brain neoplasm DISY3EKS moderate Biomarker [23]
Childhood acute lymphoblastic leukemia DISJ5D6U moderate Biomarker [4]
Lung cancer DISCM4YA moderate Altered Expression [16]
Acute myelogenous leukaemia DISCSPTN Limited Biomarker [24]
B-cell lymphoma DISIH1YQ Limited Biomarker [25]
B-cell neoplasm DISVY326 Limited Biomarker [26]
Bone osteosarcoma DIST1004 Limited Biomarker [27]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [28]
Leukemia DISNAKFL Limited Biomarker [29]
Matthew-Wood syndrome DISA7HR7 Limited Biomarker [30]
Non-small-cell lung cancer DIS5Y6R9 Limited Biomarker [31]
Osteosarcoma DISLQ7E2 Limited Biomarker [27]
Triple negative breast cancer DISAMG6N Limited Biomarker [32]
Type-1/2 diabetes DISIUHAP Limited Biomarker [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Coxsackievirus and adenovirus receptor (CXADR) affects the response to substance of Mitoxantrone. [55]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [33]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [34]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [35]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [36]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [37]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [38]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [39]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [41]
Testosterone DM7HUNW Approved Testosterone increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [42]
Bosentan DMIOGBU Approved Bosentan decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [43]
Valsartan DMREUQ6 Approved Valsartan decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [43]
BQ788 DM6KRLW Phase 3 BQ788 decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [43]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [45]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [46]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [48]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [49]
UNC0379 DMD1E4J Preclinical UNC0379 increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [50]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [51]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [52]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Coxsackievirus and adenovirus receptor (CXADR). [53]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Coxsackievirus and adenovirus receptor (CXADR). [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Coxsackievirus and adenovirus receptor (CXADR). [40]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Coxsackievirus and adenovirus receptor (CXADR). [44]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Coxsackievirus and adenovirus receptor (CXADR). [47]
------------------------------------------------------------------------------------

References

1 Role of coxsackievirus and adenovirus receptor (CAR) expression and viral load of adenovirus and enterovirus in patients with dilated cardiomyopathy.Arch Virol. 2016 Jan;161(1):87-94. doi: 10.1007/s00705-015-2632-7. Epub 2015 Oct 19.
2 Preclinical Evaluation of Allogeneic CAR T Cells Targeting BCMA for the Treatment of Multiple Myeloma.Mol Ther. 2019 Jun 5;27(6):1126-1138. doi: 10.1016/j.ymthe.2019.04.001. Epub 2019 Apr 8.
3 Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL.JCI Insight. 2019 Apr 2;5(9):e122627. doi: 10.1172/jci.insight.122627.
4 Cancer immune therapy for lymphoid malignancies: recent advances.Semin Immunopathol. 2019 Jan;41(1):111-124. doi: 10.1007/s00281-018-0696-7. Epub 2018 Jul 13.
5 Challenges of driving CD30-directed CAR-T cells to the clinic.BMC Cancer. 2019 Mar 6;19(1):203. doi: 10.1186/s12885-019-5415-9.
6 Coxsackievirus and adenovirus receptor mediates the responses of endothelial cells to fluid shear stress.Exp Mol Med. 2019 Nov 27;51(11):1-15. doi: 10.1038/s12276-019-0347-7.
7 Targeting CD46 Enhances Anti-Tumoral Activity of Adenovirus Type 5 for Bladder Cancer.Int J Mol Sci. 2018 Sep 10;19(9):2694. doi: 10.3390/ijms19092694.
8 DNA Adduct Assessment During Antihormonal Treatment of Perianal Gland Tumors With Tamoxifen in Male Dogs.In Vivo. 2019 May-Jun;33(3):731-735. doi: 10.21873/invivo.11532.
9 High-Content Analysis of Constitutive Androstane Receptor Nuclear Translocation.Methods Mol Biol. 2019;1966:71-77. doi: 10.1007/978-1-4939-9195-2_6.
10 Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators.J Biol Chem. 2019 Apr 5;294(14):5430-5437. doi: 10.1074/jbc.AC119.007558. Epub 2019 Feb 25.
11 Advances Of Chimeric Antigen Receptor T Cell Therapy In Ovarian Cancer.Onco Targets Ther. 2019 Sep 30;12:8015-8022. doi: 10.2147/OTT.S203550. eCollection 2019.
12 Antitumor effects of telomelysin in combination with paclitaxel or cisplatin on head and neck squamous cell carcinoma.Oncol Rep. 2010 Feb;23(2):355-63.
13 Adoptive cell transfer therapy for hepatocellular carcinoma.Front Med. 2019 Feb;13(1):3-11. doi: 10.1007/s11684-019-0684-x. Epub 2019 Jan 18.
14 Purinergic targeting enhances immunotherapy of CD73(+) solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells.J Immunother Cancer. 2018 Dec 4;6(1):136. doi: 10.1186/s40425-018-0441-8.
15 Allogeneic CAR T cell therapies for leukemia.Am J Hematol. 2019 May;94(S1):S50-S54. doi: 10.1002/ajh.25399. Epub 2019 Feb 1.
16 Cisplatin Synergistically Enhances Antitumor Potency of Conditionally Replicating Adenovirus via p53 Dependent or Independent Pathways in Human Lung Carcinoma.Int J Mol Sci. 2019 Mar 5;20(5):1125. doi: 10.3390/ijms20051125.
17 Induced CD20 Expression on B-Cell Malignant Cells Heightened the Cytotoxic Activity of Chimeric Antigen Receptor Engineered T Cells.Hum Gene Ther. 2019 Apr;30(4):497-510. doi: 10.1089/hum.2018.119. Epub 2019 Jan 23.
18 Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System.J Oncol. 2019 Feb 3;2019:5245034. doi: 10.1155/2019/5245034. eCollection 2019.
19 Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses.JCI Insight. 2018 Apr 5;3(7):e99573. doi: 10.1172/jci.insight.99573. eCollection 2018 Apr 5.
20 Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis.Dis Markers. 2019 Feb 11;2019:3425291. doi: 10.1155/2019/3425291. eCollection 2019.
21 The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism.Curr Drug Metab. 2019;20(1):29-35. doi: 10.2174/1389200219666180918152241.
22 Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications.Am J Hematol. 2019 May;94(S1):S28-S33. doi: 10.1002/ajh.25428. Epub 2019 Feb 25.
23 Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2(+) Breast Cancer Metastasis to the Brain.Clin Cancer Res. 2018 Jan 1;24(1):95-105. doi: 10.1158/1078-0432.CCR-17-2041. Epub 2017 Oct 23.
24 CAR-T cells beyond CD19, UnCAR-Ted territory.Am J Hematol. 2019 May;94(S1):S34-S41. doi: 10.1002/ajh.25398. Epub 2019 Jan 23.
25 Radiation Priming Chimeric Antigen Receptor T-Cell Therapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma With High Tumor Burden.J Immunother. 2020 Jan;43(1):32-37. doi: 10.1097/CJI.0000000000000284.
26 T cells redirected against Ig for the immunotherapy of B cell lymphoma.Leukemia. 2020 Mar;34(3):821-830. doi: 10.1038/s41375-019-0607-5. Epub 2019 Oct 17.
27 Treating osteosarcoma with CAR T cells.Scand J Immunol. 2019 Mar;89(3):e12741. doi: 10.1111/sji.12741. Epub 2019 Jan 15.
28 Combination Therapy with EpCAM-CAR-NK-92 Cells and Regorafenib against Human Colorectal Cancer Models.J Immunol Res. 2018 Oct 15;2018:4263520. doi: 10.1155/2018/4263520. eCollection 2018.
29 Immunotherapy in pediatric B-cell acute lymphoblastic leukemia.Hum Immunol. 2019 Jun;80(6):400-408. doi: 10.1016/j.humimm.2019.01.011. Epub 2019 Feb 1.
30 Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma.Gut. 2019 Jun;68(6):1052-1064. doi: 10.1136/gutjnl-2018-316595. Epub 2018 Aug 18.
31 Mesothelin-targeted second generation CAR-T cells inhibit growth of mesothelin-expressing tumors in vivo.Exp Ther Med. 2019 Jan;17(1):739-747. doi: 10.3892/etm.2018.7015. Epub 2018 Nov 27.
32 EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC.Aging (Albany NY). 2019 Dec 4;11(23):11054-11072. doi: 10.18632/aging.102510. Epub 2019 Dec 4.
33 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
34 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
35 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
36 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
37 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
38 Expression of coxsackie-adenovirus receptor is related to estrogen sensitivity in breast cancer. Breast Cancer Res Treat. 2009 Jul;116(1):103-11. doi: 10.1007/s10549-008-0108-0. Epub 2008 Jul 10.
39 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
40 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
41 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
42 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
43 Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. J Gen Virol. 2010 Aug;91(Pt 8):1959-1970. doi: 10.1099/vir.0.020065-0. Epub 2010 Apr 14.
44 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
45 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
46 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
47 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
48 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
49 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
50 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
51 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
52 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
53 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
54 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
55 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.