General Information of Drug Off-Target (DOT) (ID: OTGSG2PA)

DOT Name Centrosomal protein of 55 kDa (CEP55)
Synonyms Cep55; Up-regulated in colon cancer 6
Gene Name CEP55
Related Disease
Adult glioblastoma ( )
Advanced cancer ( )
Benign prostatic hyperplasia ( )
Bladder cancer ( )
Bladder transitional cell carcinoma ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Cervical cancer ( )
Cervical carcinoma ( )
Ciliopathy ( )
Clear cell renal carcinoma ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Head-neck squamous cell carcinoma ( )
Hydranencephaly ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Multinucleated neurons-anhydramnios-renal dysplasia-cerebellar hypoplasia-hydranencephaly syndrome ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
NPHP3-related Meckel-like syndrome ( )
Pancreatic cancer ( )
Polycystic ovarian syndrome ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
Renal dysplasia ( )
Stomach cancer ( )
T-cell lymphoma ( )
Tarsal-carpal coalition syndrome ( )
Transitional cell carcinoma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Complex neurodevelopmental disorder ( )
Bone osteosarcoma ( )
Osteosarcoma ( )
Castration-resistant prostate carcinoma ( )
Colon cancer ( )
Colonic neoplasm ( )
Colorectal carcinoma ( )
Hepatocellular carcinoma ( )
Meckel syndrome ( )
Small lymphocytic lymphoma ( )
UniProt ID
CEP55_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3E1R; 3WUT; 3WUU; 3WUV
Pfam ID
PF12180
Sequence
MSSRSTKDLIKSKWGSKPSNSKSETTLEKLKGEIAHLKTSVDEITSGKGKLTDKERHRLL
EKIRVLEAEKEKNAYQLTEKDKEIQRLRDQLKARYSTTTLLEQLEETTREGERREQVLKA
LSEEKDVLKQQLSAATSRIAELESKTNTLRLSQTVAPNCFNSSINNIHEMEIQLKDALEK
NQQWLVYDQQREVYVKGLLAKIFELEKKTETAAHSLPQQTKKPESEGYLQEEKQKCYNDL
LASAKKDLEVERQTITQLSFELSEFRRKYEETQKEVHNLNQLLYSQRRADVQHLEDDRHK
TEKIQKLREENDIARGKLEEEKKRSEELLSQVQFLYTSLLKQQEEQTRVALLEQQMQACT
LDFENEKLDRQHVQHQLHVILKELRKARNQITQLESLKQLHEFAITEPLVTFQGETENRE
KVAASPKSPTAALNESLVECPKCNIQYPATEHRDLLVHVEYCSK
Function
Plays a role in mitotic exit and cytokinesis. Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis. Not required for microtubule nucleation. Plays a role in the development of the brain and kidney.
Tissue Specificity
Expressed in embryonic brain . Expressed in fetal brain ganglionic eminence, kidney tubules and multinucleate neurons in the temporal cortex . Expressed in adult brain, cerebellum, kidney tubules, intestine and muscles (at protein level) . Widely expressed, mostly in proliferative tissues. Highly expressed in testis. Intermediate levels in adult and fetal thymus, as well as in various cancer cell lines. Low levels in different parts of the digestive tract, bone marrow, lymph nodes, placenta, fetal heart and fetal spleen. Hardly detected in brain.

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult glioblastoma DISVP4LU Strong Altered Expression [1]
Advanced cancer DISAT1Z9 Strong Altered Expression [2]
Benign prostatic hyperplasia DISI3CW2 Strong Altered Expression [3]
Bladder cancer DISUHNM0 Strong Altered Expression [4]
Bladder transitional cell carcinoma DISNL46A Strong Biomarker [3]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Biomarker [5]
Cervical cancer DISFSHPF Strong Altered Expression [6]
Cervical carcinoma DIST4S00 Strong Altered Expression [6]
Ciliopathy DIS10G4I Strong Biomarker [7]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [2]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [8]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Biomarker [10]
Glioblastoma multiforme DISK8246 Strong Altered Expression [1]
Glioma DIS5RPEH Strong Biomarker [11]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [12]
Hydranencephaly DISE02PO Strong Biomarker [13]
Lung adenocarcinoma DISD51WR Strong Altered Expression [14]
Lung cancer DISCM4YA Strong Biomarker [15]
Lung carcinoma DISTR26C Strong Biomarker [15]
Multinucleated neurons-anhydramnios-renal dysplasia-cerebellar hypoplasia-hydranencephaly syndrome DISUI3YD Strong Autosomal recessive [16]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [17]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [15]
NPHP3-related Meckel-like syndrome DIS2QQIV Strong Genetic Variation [7]
Pancreatic cancer DISJC981 Strong Biomarker [18]
Polycystic ovarian syndrome DISZ2BNG Strong Biomarker [19]
Prostate cancer DISF190Y Strong Altered Expression [20]
Prostate carcinoma DISMJPLE Strong Altered Expression [20]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [21]
Renal dysplasia DIS3DFGD Strong Biomarker [13]
Stomach cancer DISKIJSX Strong Biomarker [10]
T-cell lymphoma DISSXRTQ Strong Altered Expression [22]
Tarsal-carpal coalition syndrome DISY90L2 Strong Altered Expression [3]
Transitional cell carcinoma DISWVVDR Strong Altered Expression [3]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [4]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [4]
Complex neurodevelopmental disorder DISB9AFI Moderate Autosomal recessive [23]
Bone osteosarcoma DIST1004 Disputed Biomarker [24]
Osteosarcoma DISLQ7E2 Disputed Biomarker [24]
Castration-resistant prostate carcinoma DISVGAE6 Limited Biomarker [25]
Colon cancer DISVC52G Limited Genetic Variation [26]
Colonic neoplasm DISSZ04P Limited Altered Expression [26]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [26]
Hepatocellular carcinoma DIS0J828 Limited Genetic Variation [27]
Meckel syndrome DISXPHOY Limited GermlineCausalMutation [7]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
31 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Centrosomal protein of 55 kDa (CEP55). [29]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Centrosomal protein of 55 kDa (CEP55). [30]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Centrosomal protein of 55 kDa (CEP55). [31]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Centrosomal protein of 55 kDa (CEP55). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Centrosomal protein of 55 kDa (CEP55). [33]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Centrosomal protein of 55 kDa (CEP55). [34]
Quercetin DM3NC4M Approved Quercetin increases the expression of Centrosomal protein of 55 kDa (CEP55). [35]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Centrosomal protein of 55 kDa (CEP55). [36]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Centrosomal protein of 55 kDa (CEP55). [37]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Centrosomal protein of 55 kDa (CEP55). [38]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Centrosomal protein of 55 kDa (CEP55). [37]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Centrosomal protein of 55 kDa (CEP55). [39]
Progesterone DMUY35B Approved Progesterone decreases the expression of Centrosomal protein of 55 kDa (CEP55). [40]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Centrosomal protein of 55 kDa (CEP55). [41]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Centrosomal protein of 55 kDa (CEP55). [42]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Centrosomal protein of 55 kDa (CEP55). [43]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Centrosomal protein of 55 kDa (CEP55). [44]
Lucanthone DMZLBUO Approved Lucanthone decreases the expression of Centrosomal protein of 55 kDa (CEP55). [45]
Methamphetamine DMPM4SK Approved Methamphetamine decreases the expression of Centrosomal protein of 55 kDa (CEP55). [46]
Palbociclib DMD7L94 Approved Palbociclib decreases the expression of Centrosomal protein of 55 kDa (CEP55). [47]
GSK2110183 DMZHB37 Phase 2 GSK2110183 decreases the expression of Centrosomal protein of 55 kDa (CEP55). [48]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Centrosomal protein of 55 kDa (CEP55). [49]
TAK-114 DMTXE19 Phase 1 TAK-114 decreases the expression of Centrosomal protein of 55 kDa (CEP55). [50]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Centrosomal protein of 55 kDa (CEP55). [51]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Centrosomal protein of 55 kDa (CEP55). [52]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Centrosomal protein of 55 kDa (CEP55). [53]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Centrosomal protein of 55 kDa (CEP55). [34]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Centrosomal protein of 55 kDa (CEP55). [54]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Centrosomal protein of 55 kDa (CEP55). [55]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Centrosomal protein of 55 kDa (CEP55). [56]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Centrosomal protein of 55 kDa (CEP55). [50]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Drug(s)

References

1 Identification of Potential Biomarkers in Glioblastoma through Bioinformatic Analysis and Evaluating Their Prognostic Value.Biomed Res Int. 2019 Apr 15;2019:6581576. doi: 10.1155/2019/6581576. eCollection 2019.
2 Diagnostic and prognostic value of CEP55 in clear cell renal cell carcinoma as determined by bioinformatics analysis.Mol Med Rep. 2019 May;19(5):3485-3496. doi: 10.3892/mmr.2019.10042. Epub 2019 Mar 15.
3 Expression and clinical significance of Centrosomal protein 55 (CEP55) in human urinary bladder transitional cell carcinoma.Immunobiology. 2015 Jan;220(1):103-8. doi: 10.1016/j.imbio.2014.08.014. Epub 2014 Aug 21.
4 Assessment of CEP55, PLK1 and FOXM1 expression in patients with bladder cancer in comparison with healthy individuals.Cancer Invest. 2018;36(8):407-414. doi: 10.1080/07357907.2018.1514504. Epub 2018 Oct 2.
5 MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55.Cancer Biol Ther. 2018 Apr 3;19(4):306-315. doi: 10.1080/15384047.2017.1416934. Epub 2018 Mar 26.
6 High levels of centrosomal protein 55 expression is associated with poor clinical prognosis in patients with cervical cancer.Oncol Lett. 2018 Jun;15(6):9347-9352. doi: 10.3892/ol.2018.8448. Epub 2018 Apr 10.
7 A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy.Clin Genet. 2017 Nov;92(5):510-516. doi: 10.1111/cge.13012. Epub 2017 May 3.
8 Upregulation of centrosomal protein 55 is associated with unfavorable prognosis and tumor invasion in epithelial ovarian carcinoma.Tumour Biol. 2016 May;37(5):6239-54. doi: 10.1007/s13277-015-4419-6. Epub 2015 Nov 28.
9 Integrated analysis of differentially expressed genes in esophageal squamous cell carcinoma using bioinformatics.Neoplasma. 2018;65(4):523-531. doi: 10.4149/neo_2018_170708N470.
10 CEP55 contributes to human gastric carcinoma by regulating cell proliferation.Tumour Biol. 2014 May;35(5):4389-99. doi: 10.1007/s13277-013-1578-1. Epub 2014 Jan 4.
11 CEP55 promoted the migration, invasion and neuroshpere formation of the glioma cell line U251.Neurosci Lett. 2019 Jul 13;705:80-86. doi: 10.1016/j.neulet.2019.04.038. Epub 2019 Apr 18.
12 Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma.Oral Oncol. 2010 Jul;46(7):536-42. doi: 10.1016/j.oraloncology.2010.03.022. Epub 2010 Apr 18.
13 An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia.Eur J Hum Genet. 2019 Apr;27(4):657-662. doi: 10.1038/s41431-018-0306-0. Epub 2019 Jan 8.
14 Correlation between EZH2 and CEP55 and lung adenocarcinoma prognosis.Pathol Res Pract. 2019 Feb;215(2):292-301. doi: 10.1016/j.prp.2018.11.016. Epub 2018 Nov 24.
15 High CEP55 expression is associated with poor prognosis in non-small-cell lung cancer.Onco Targets Ther. 2018 Aug 17;11:4979-4990. doi: 10.2147/OTT.S165750. eCollection 2018.
16 [Congress discussion on EEC-directives for nurses: nurses in EEC interested in the development of nursing]. Sygeplejersken. 1978 May 31;78(21):8-9.
17 Comparison of therapeutic effects of acarbose and metformin under different -cell function status in Chinese patients with type 2 diabetes.Endocr J. 2019 May 28;66(5):443-450. doi: 10.1507/endocrj.EJ18-0466. Epub 2019 Apr 2.
18 Centrosomal protein 55 activates NF-B signalling and promotes pancreatic cancer cells aggressiveness.Sci Rep. 2017 Jul 19;7(1):5925. doi: 10.1038/s41598-017-06132-z.
19 Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles.J Clin Endocrinol Metab. 2011 Jun;96(6):1737-46. doi: 10.1210/jc.2010-2600. Epub 2011 Mar 16.
20 MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55.Am J Transl Res. 2018 Aug 15;10(8):2457-2468. eCollection 2018.
21 CEP55 promotes epithelial-mesenchymal transition in renal cell carcinoma through PI3K/AKT/mTOR pathway.Clin Transl Oncol. 2019 Jul;21(7):939-949. doi: 10.1007/s12094-018-02012-8. Epub 2019 Jan 3.
22 Expression and clinical significance of centrosomal protein 55 in T-cell lymphoma.J Cancer Res Ther. 2018 Jan;14(1):94-98. doi: 10.4103/jcrt.JCRT_758_17.
23 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
24 CEP55 promotes the proliferation and invasion of tumour cells via the AKT signalling pathway in osteosarcoma.Carcinogenesis. 2018 Apr 5;39(4):623-631. doi: 10.1093/carcin/bgy017.
25 MicroRNA-144-3p inhibits cell proliferation and promotes apoptosis in castration-resistant prostate cancer by targeting CEP55.Eur Rev Med Pharmacol Sci. 2018 Nov;22(22):7660-7670. doi: 10.26355/eurrev_201811_16383.
26 Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor.Oncogene. 2006 Jan 19;25(3):480-6. doi: 10.1038/sj.onc.1209051.
27 Bioinformatics analysis of the interactions among lncRNA, miRNA and mRNA expression, genetic mutations and epigenetic modifications in hepatocellular carcinoma.Mol Med Rep. 2019 Feb;19(2):1356-1364. doi: 10.3892/mmr.2018.9728. Epub 2018 Dec 5.
28 Mitotic slippage: an old tale with a new twist.Cell Cycle. 2019 Jan;18(1):7-15. doi: 10.1080/15384101.2018.1559557. Epub 2019 Jan 2.
29 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
30 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
31 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
32 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
37 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
38 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
39 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
40 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
41 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
42 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
43 Effects of acute ethanol treatment on NCCIT cells and NCCIT cell-derived embryoid bodies (EBs). Toxicol In Vitro. 2010 Sep;24(6):1696-704. doi: 10.1016/j.tiv.2010.05.017. Epub 2010 May 26.
44 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
45 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
46 Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One. 2014 Oct 7;9(10):e109603.
47 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
48 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
49 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
50 In silico, in vitro and in vivo studies: Dibutyl phthalate promotes prostate cancer cell proliferation by activating Forkhead Box M1 and remission after Natura- pretreatment. Toxicology. 2023 Apr;488:153465. doi: 10.1016/j.tox.2023.153465. Epub 2023 Feb 23.
51 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
52 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
53 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
54 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
55 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
56 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.