General Information of Drug Off-Target (DOT) (ID: OTO8HVVB)

DOT Name DNA damage-binding protein 2 (DDB2)
Synonyms DDB p48 subunit; DDBb; Damage-specific DNA-binding protein 2; UV-damaged DNA-binding protein 2; UV-DDB 2
Gene Name DDB2
Related Disease
Xeroderma pigmentosum group E ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Chromosomal disorder ( )
Colonic neoplasm ( )
Colorectal adenoma ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Hepatitis B virus infection ( )
Lung cancer ( )
Lung carcinoma ( )
Major depressive disorder ( )
Mood disorder ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Skin neoplasm ( )
Stomach cancer ( )
Triple negative breast cancer ( )
Vascular disease ( )
Colorectal carcinoma ( )
Melanoma ( )
Skin cancer ( )
Xeroderma pigmentosum ( )
Advanced cancer ( )
Colon adenocarcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Head-neck squamous cell carcinoma ( )
Malignant pleural mesothelioma ( )
UniProt ID
DDB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3EI4; 3I7L; 4E54; 4E5Z; 6R8Y; 6R8Z; 6R90; 6R91; 6R92
Pfam ID
PF00400
Sequence
MAPKKRPETQKTSEIVLRPRNKRSRSPLELEPEAKKLCAKGSGPSRRCDSDCLWVGLAGP
QILPPCRSIVRTLHQHKLGRASWPSVQQGLQQSFLHTLDSYRILQKAAPFDRRATSLAWH
PTHPSTVAVGSKGGDIMLWNFGIKDKPTFIKGIGAGGSITGLKFNPLNTNQFYASSMEGT
TRLQDFKGNILRVFASSDTINIWFCSLDVSASSRMVVTGDNVGNVILLNMDGKELWNLRM
HKKKVTHVALNPCCDWFLATASVDQTVKIWDLRQVRGKASFLYSLPHRHPVNAACFSPDG
ARLLTTDQKSEIRVYSASQWDCPLGLIPHPHRHFQHLTPIKAAWHPRYNLIVVGRYPDPN
FKSCTPYELRTIDVFDGNSGKMMCQLYDPESSGISSLNEFNPMGDTLASAMGYHILIWSQ
EEARTRK
Function
Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively. Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair. The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches. Also functions as the substrate recognition module for the DCX (DDB2-CUL4-X-box) E3 ubiquitin-protein ligase complex DDB2-CUL4-ROC1 (also known as CUL4-DDB-ROC1 and CUL4-DDB-RBX1). The DDB2-CUL4-ROC1 complex may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage. The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair. The DDB2-CUL4-ROC1 complex also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER. The DDB2-CUL4-ROC1 complex also ubiquitinates KAT7/HBO1 in response to DNA damage, leading to its degradation: recognizes KAT7/HBO1 following phosphorylation by ATR ; [Isoform D1]: Inhibits UV-damaged DNA repair; [Isoform D2]: Inhibits UV-damaged DNA repair.
Tissue Specificity
Ubiquitously expressed; with highest levels in corneal endothelium and lowest levels in brain. Isoform D1 is highly expressed in brain and heart. Isoform D2, isoform D3 and isoform D4 are weakly expressed.
KEGG Pathway
Nucleotide excision repair (hsa03420 )
p53 sig.ling pathway (hsa04115 )
Ubiquitin mediated proteolysis (hsa04120 )
Hepatitis B (hsa05161 )
Epstein-Barr virus infection (hsa05169 )
Pathways in cancer (hsa05200 )
Transcriptio.l misregulation in cancer (hsa05202 )
Colorectal cancer (hsa05210 )
Pancreatic cancer (hsa05212 )
Endometrial cancer (hsa05213 )
Glioma (hsa05214 )
Thyroid cancer (hsa05216 )
Basal cell carcinoma (hsa05217 )
Melanoma (hsa05218 )
Chronic myeloid leukemia (hsa05220 )
Small cell lung cancer (hsa05222 )
Non-small cell lung cancer (hsa05223 )
Breast cancer (hsa05224 )
Hepatocellular carcinoma (hsa05225 )
Gastric cancer (hsa05226 )
Reactome Pathway
DNA Damage Recognition in GG-NER (R-HSA-5696394 )
Formation of Incision Complex in GG-NER (R-HSA-5696395 )
Dual Incision in GG-NER (R-HSA-5696400 )
TP53 Regulates Transcription of DNA Repair Genes (R-HSA-6796648 )
Neddylation (R-HSA-8951664 )
Ub-specific processing proteases (R-HSA-5689880 )

Molecular Interaction Atlas (MIA) of This DOT

36 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Xeroderma pigmentosum group E DIS9Q3CA Definitive Autosomal recessive [1]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Biomarker [2]
Breast neoplasm DISNGJLM Strong Biomarker [3]
Chromosomal disorder DISM5BB5 Strong Altered Expression [4]
Colonic neoplasm DISSZ04P Strong Biomarker [5]
Colorectal adenoma DISTSVHM Strong Altered Expression [6]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [7]
Gastric cancer DISXGOUK Strong Genetic Variation [8]
Glioblastoma multiforme DISK8246 Strong Biomarker [9]
Hepatitis B virus infection DISLQ2XY Strong Altered Expression [10]
Lung cancer DISCM4YA Strong Genetic Variation [11]
Lung carcinoma DISTR26C Strong Genetic Variation [11]
Major depressive disorder DIS4CL3X Strong Genetic Variation [12]
Mood disorder DISLVMWO Strong Genetic Variation [12]
Neoplasm DISZKGEW Strong Altered Expression [13]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [14]
Ovarian cancer DISZJHAP Strong Biomarker [7]
Ovarian neoplasm DISEAFTY Strong Biomarker [7]
Pancreatic cancer DISJC981 Strong Genetic Variation [15]
Prostate cancer DISF190Y Strong Biomarker [16]
Prostate carcinoma DISMJPLE Strong Biomarker [16]
Skin neoplasm DIS16DDV Strong Altered Expression [17]
Stomach cancer DISKIJSX Strong Genetic Variation [8]
Triple negative breast cancer DISAMG6N Strong Altered Expression [18]
Vascular disease DISVS67S Strong Genetic Variation [19]
Colorectal carcinoma DIS5PYL0 moderate Altered Expression [20]
Melanoma DIS1RRCY moderate Biomarker [21]
Skin cancer DISTM18U moderate Genetic Variation [22]
Xeroderma pigmentosum DISQ9H19 Supportive Autosomal recessive [23]
Advanced cancer DISAT1Z9 Limited Altered Expression [24]
Colon adenocarcinoma DISDRE0J Limited Biomarker [25]
Colon cancer DISVC52G Limited Altered Expression [6]
Colon carcinoma DISJYKUO Limited Altered Expression [6]
Head-neck squamous cell carcinoma DISF7P24 Limited Biomarker [25]
Malignant pleural mesothelioma DIST2R60 Limited Biomarker [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of DNA damage-binding protein 2 (DDB2). [27]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of DNA damage-binding protein 2 (DDB2). [28]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of DNA damage-binding protein 2 (DDB2). [29]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of DNA damage-binding protein 2 (DDB2). [30]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of DNA damage-binding protein 2 (DDB2). [31]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of DNA damage-binding protein 2 (DDB2). [32]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of DNA damage-binding protein 2 (DDB2). [33]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of DNA damage-binding protein 2 (DDB2). [34]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of DNA damage-binding protein 2 (DDB2). [35]
Quercetin DM3NC4M Approved Quercetin increases the expression of DNA damage-binding protein 2 (DDB2). [28]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide affects the expression of DNA damage-binding protein 2 (DDB2). [36]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of DNA damage-binding protein 2 (DDB2). [37]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of DNA damage-binding protein 2 (DDB2). [38]
Testosterone DM7HUNW Approved Testosterone decreases the expression of DNA damage-binding protein 2 (DDB2). [38]
Decitabine DMQL8XJ Approved Decitabine affects the expression of DNA damage-binding protein 2 (DDB2). [39]
Marinol DM70IK5 Approved Marinol decreases the expression of DNA damage-binding protein 2 (DDB2). [40]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of DNA damage-binding protein 2 (DDB2). [41]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of DNA damage-binding protein 2 (DDB2). [42]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of DNA damage-binding protein 2 (DDB2). [43]
Mitomycin DMH0ZJE Approved Mitomycin increases the expression of DNA damage-binding protein 2 (DDB2). [44]
Cidofovir DMA13GD Approved Cidofovir increases the expression of DNA damage-binding protein 2 (DDB2). [45]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of DNA damage-binding protein 2 (DDB2). [45]
Hydroxyurea DMOQVU9 Approved Hydroxyurea increases the expression of DNA damage-binding protein 2 (DDB2). [44]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of DNA damage-binding protein 2 (DDB2). [45]
Morphine DMRMS0L Approved Morphine increases the expression of DNA damage-binding protein 2 (DDB2). [46]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of DNA damage-binding protein 2 (DDB2). [47]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of DNA damage-binding protein 2 (DDB2). [48]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of DNA damage-binding protein 2 (DDB2). [49]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of DNA damage-binding protein 2 (DDB2). [50]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of DNA damage-binding protein 2 (DDB2). [52]
UNC0379 DMD1E4J Preclinical UNC0379 increases the expression of DNA damage-binding protein 2 (DDB2). [53]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of DNA damage-binding protein 2 (DDB2). [54]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of DNA damage-binding protein 2 (DDB2). [55]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of DNA damage-binding protein 2 (DDB2). [56]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of DNA damage-binding protein 2 (DDB2). [57]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of DNA damage-binding protein 2 (DDB2). [58]
Paraquat DMR8O3X Investigative Paraquat increases the expression of DNA damage-binding protein 2 (DDB2). [59]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of DNA damage-binding protein 2 (DDB2). [51]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 NRF1 motif sequence-enriched genes involved in ER/PR -ve HER2 +ve breast cancer signaling pathways.Breast Cancer Res Treat. 2018 Nov;172(2):469-485. doi: 10.1007/s10549-018-4905-9. Epub 2018 Aug 20.
3 DDB2: a novel regulator of NF-B and breast tumor invasion.Cancer Res. 2013 Aug 15;73(16):5040-52. doi: 10.1158/0008-5472.CAN-12-3655. Epub 2013 Jun 17.
4 Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity.Nat Commun. 2014 Apr 28;5:3695. doi: 10.1038/ncomms4695.
5 DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer.Cancer Res. 2017 Dec 1;77(23):6562-6575. doi: 10.1158/0008-5472.CAN-17-1570. Epub 2017 Oct 11.
6 Expression of DDB2 Protein in the Initiation, Progression, and Prognosis of Colorectal Cancer.Dig Dis Sci. 2018 Nov;63(11):2959-2968. doi: 10.1007/s10620-018-5224-z. Epub 2018 Jul 27.
7 DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1.Cell Death Dis. 2018 May 1;9(5):561. doi: 10.1038/s41419-018-0585-y.
8 Association of nucleotide excision repair pathway gene polymorphisms with gastric cancer and atrophic gastritis risks.Oncotarget. 2016 Feb 9;7(6):6972-83. doi: 10.18632/oncotarget.6853.
9 Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks.Cancer Res. 2007 Dec 15;67(24):11886-95. doi: 10.1158/0008-5472.CAN-07-2964.
10 Hepatitis B virus X protein associated with UV-DDB1 induces cell death in the nucleus and is functionally antagonized by UV-DDB2.J Biol Chem. 2002 Oct 11;277(41):38847-54. doi: 10.1074/jbc.M205722200. Epub 2002 Jul 31.
11 Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study.Carcinogenesis. 2006 Jul;27(7):1475-80. doi: 10.1093/carcin/bgi350. Epub 2006 Mar 7.
12 Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways.Nat Genet. 2018 Jul;50(7):920-927. doi: 10.1038/s41588-018-0151-7. Epub 2018 Jun 25.
13 NER-factor DDB2 regulates HIF1 and hypoxia-response genes in HNSCC.Oncogene. 2020 Feb;39(8):1784-1796. doi: 10.1038/s41388-019-1105-y. Epub 2019 Nov 18.
14 DDB2 increases radioresistance of NSCLC cells by enhancing DNA damage responses.Tumour Biol. 2016 Oct;37(10):14183-14191. doi: 10.1007/s13277-016-5203-y. Epub 2016 Aug 23.
15 Association of single nucleotide polymorphisms of DNA repair genes in NER pathway and susceptibility to pancreatic cancer.Int J Clin Exp Pathol. 2015 Sep 1;8(9):11579-86. eCollection 2015.
16 NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer.Oncotarget. 2017 Mar 28;8(13):21501-21515. doi: 10.18632/oncotarget.15308.
17 Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism.Cancer Prev Res (Phila). 2010 Dec;3(12):1621-9. doi: 10.1158/1940-6207.CAPR-10-0137. Epub 2010 Oct 8.
18 Depletion of DNA damage binding protein 2 sensitizes triple-negative breast cancer cells to poly ADP-ribose polymerase inhibition by destabilizing Rad51.Cancer Sci. 2019 Nov;110(11):3543-3552. doi: 10.1111/cas.14201. Epub 2019 Oct 6.
19 Nucleotide excision DNA repair is associated with age-related vascular dysfunction.Circulation. 2012 Jul 24;126(4):468-78. doi: 10.1161/CIRCULATIONAHA.112.104380. Epub 2012 Jun 15.
20 The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis.Biomed Res Int. 2018 Jan 15;2018:9651320. doi: 10.1155/2018/9651320. eCollection 2018.
21 Repair of UVB-induced DNA damage is reduced in melanoma due to low XPC and global genome repair.Oncotarget. 2016 Sep 20;7(38):60940-60953. doi: 10.18632/oncotarget.10902.
22 Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells.Photochem Photobiol. 2011 May-Jun;87(3):729-33. doi: 10.1111/j.1751-1097.2011.00909.x. Epub 2011 Mar 9.
23 Xeroderma Pigmentosum. 2003 Jun 20 [updated 2022 Mar 24]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
24 Emerging Roles of DDB2 in Cancer.Int J Mol Sci. 2019 Oct 18;20(20):5168. doi: 10.3390/ijms20205168.
25 DDB2 regulates Epithelial-to-Mesenchymal Transition (EMT) in Oral/Head and Neck Squamous Cell Carcinoma.Oncotarget. 2018 Oct 5;9(78):34708-34718. doi: 10.18632/oncotarget.26168. eCollection 2018 Oct 5.
26 Gene expression profiling of homologous recombination repair pathway indicates susceptibility for olaparib treatment in malignant pleural mesothelioma in vitro.BMC Cancer. 2019 Jan 30;19(1):108. doi: 10.1186/s12885-019-5314-0.
27 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
28 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
29 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
30 Exploring pradimicin-IRD antineoplastic mechanisms and related DNA repair pathways. Chem Biol Interact. 2023 Feb 1;371:110342. doi: 10.1016/j.cbi.2023.110342. Epub 2023 Jan 10.
31 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
32 p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 2011 Apr 21;6(4):e19198. doi: 10.1371/journal.pone.0019198.
33 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
34 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
35 Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010 Jan 31;268(1-2):31-9.
36 Evaluation of gene expression changes in human primary lung epithelial cells following 24-hr exposures to inorganic arsenic and its methylated metabolites and to arsenic trioxide. Environ Mol Mutagen. 2015 Jun;56(5):477-90. doi: 10.1002/em.21937. Epub 2015 Apr 14.
37 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
38 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
39 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
40 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
41 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
42 Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett. 2004 Oct 8;214(1):19-33.
43 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
44 Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment. Mutat Res. 2008 Oct 30;656(1-2):1-7.
45 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
46 Morphine induces DNA damage and P53 activation in CD3+ T cells. Biochim Biophys Acta. 2009 Aug;1790(8):793-9. doi: 10.1016/j.bbagen.2009.04.011. Epub 2009 May 3.
47 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
48 A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol. 2015 Jun 1;285(2):79-88.
49 Altered gene expression patterns in MCF-7 cells induced by the urban dust particulate complex mixture standard reference material 1649a. Cancer Res. 2005 Feb 15;65(4):1251-8.
50 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
51 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
52 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
53 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
54 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
55 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
56 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
57 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
58 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
59 Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS One. 2013 Apr 16;8(4):e61980. doi: 10.1371/journal.pone.0061980. Print 2013.