General Information of Drug Off-Target (DOT) (ID: OTSIWXGG)

DOT Name Glucokinase regulatory protein (GCKR)
Synonyms GKRP; Glucokinase regulator
Gene Name GCKR
Related Disease
Hepatitis B virus infection ( )
Nephropathy ( )
Neural tube defect ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Atrial fibrillation ( )
Cardiac failure ( )
Cardiovascular disease ( )
Chronic kidney disease ( )
Chronic renal failure ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Crohn disease ( )
End-stage renal disease ( )
Fatty liver disease ( )
Hepatitis C virus infection ( )
Hyperglycemia ( )
Insulinoma ( )
Maturity-onset diabetes of the young ( )
Metabolic disorder ( )
Myocardial infarction ( )
Myocardial ischemia ( )
Obesity ( )
Pancreatic cancer ( )
Polycystic ovarian syndrome ( )
Stroke ( )
Type-1/2 diabetes ( )
Alcohol dependence ( )
Alcohol-induced disorders ( )
Alcohol-related disorders ( )
Ankylosing spondylitis ( )
Gout ( )
Hepatitis ( )
Inflammatory bowel disease ( )
Maturity-onset diabetes of the young type 2 ( )
Monogenic diabetes ( )
Non-alcoholic fatty liver disease ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Type-1 diabetes ( )
Ulcerative colitis ( )
Urolithiasis ( )
UniProt ID
GCKR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4BB9; 4BBA; 4LY9; 4MQU; 4MRO; 4MSU; 4OHK; 4OHM; 4OHO; 4OHP; 4OLH; 4OP1; 4OP2; 4OP3; 4PX2; 4PX3; 4PX5; 4PXS
Pfam ID
PF20741
Sequence
MPGTKRFQHVIETPEPGKWELSGYEAAVPITEKSNPLTQDLDKADAENIVRLLGQCDAEI
FQEEGQALSTYQRLYSESILTTMVQVAGKVQEVLKEPDGGLVVLSGGGTSGRMAFLMSVS
FNQLMKGLGQKPLYTYLIAGGDRSVVASREGTEDSALHGIEELKKVAAGKKRVIVIGISV
GLSAPFVAGQMDCCMNNTAVFLPVLVGFNPVSMARNDPIEDWSSTFRQVAERMQKMQEKQ
KAFVLNPAIGPEGLSGSSRMKGGSATKILLETLLLAAHKTVDQGIAASQRCLLEILRTFE
RAHQVTYSQSPKIATLMKSVSTSLEKKGHVYLVGWQTLGIIAIMDGVECIHTFGADFRDV
RGFLIGDHSDMFNQKAELTNQGPQFTFSQEDFLTSILPSLTEIDTVVFIFTLDDNLTEVQ
TIVEQVKEKTNHIQALAHSTVGQTLPIPLKKLFPSIISITWPLLFFEYEGNFIQKFQREL
STKWVLNTVSTGAHVLLGKILQNHMLDLRISNSKLFWRALAMLQRFSGQSKARCIESLLR
AIHFPQPLSDDIRAAPISCHVQVAHEKEQVIPIALLSLLFRCSITEAQAHLAAAPSVCEA
VRSALAGPGQKRTADPLEILEPDVQ
Function
Regulates glucokinase (GCK) by forming an inactive complex with this enzyme. Acts by promoting GCK recruitment to the nucleus, possibly to provide a reserve of GCK that can be quickly released in the cytoplasm after a meal. The affinity of GCKR for GCK is modulated by fructose metabolites: GCKR with bound fructose 6-phosphate has increased affinity for GCK, while GCKR with bound fructose 1-phosphate has strongly decreased affinity for GCK and does not inhibit GCK activity.
Tissue Specificity Found in liver and pancreas. Not detected in muscle, brain, heart, thymus, intestine, uterus, adipose tissue, kidney, adrenal, lung or spleen.
Reactome Pathway
Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC) (R-HSA-5619107 )
Regulation of Glucokinase by Glucokinase Regulatory Protein (R-HSA-170822 )

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatitis B virus infection DISLQ2XY Definitive Genetic Variation [1]
Nephropathy DISXWP4P Definitive Genetic Variation [2]
Neural tube defect DIS5J95E Definitive Genetic Variation [3]
Advanced cancer DISAT1Z9 Strong Genetic Variation [4]
Arteriosclerosis DISK5QGC Strong Biomarker [5]
Atherosclerosis DISMN9J3 Strong Biomarker [5]
Atrial fibrillation DIS15W6U Strong Genetic Variation [4]
Cardiac failure DISDC067 Strong Genetic Variation [4]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [6]
Chronic kidney disease DISW82R7 Strong Biomarker [7]
Chronic renal failure DISGG7K6 Strong Genetic Variation [8]
Coronary atherosclerosis DISKNDYU Strong Biomarker [7]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [9]
Crohn disease DIS2C5Q8 Strong Genetic Variation [10]
End-stage renal disease DISXA7GG Strong Genetic Variation [11]
Fatty liver disease DIS485QZ Strong Genetic Variation [12]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [13]
Hyperglycemia DIS0BZB5 Strong Genetic Variation [14]
Insulinoma DISIU1JS Strong Altered Expression [15]
Maturity-onset diabetes of the young DISG75M5 Strong Genetic Variation [16]
Metabolic disorder DIS71G5H Strong Biomarker [17]
Myocardial infarction DIS655KI Strong Genetic Variation [18]
Myocardial ischemia DISFTVXF Strong Genetic Variation [18]
Obesity DIS47Y1K Strong Genetic Variation [19]
Pancreatic cancer DISJC981 Strong Genetic Variation [20]
Polycystic ovarian syndrome DISZ2BNG Strong Genetic Variation [21]
Stroke DISX6UHX Strong Genetic Variation [4]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [22]
Alcohol dependence DIS4ZSCO moderate Genetic Variation [23]
Alcohol-induced disorders DIS3SFYT moderate Genetic Variation [23]
Alcohol-related disorders DIS3K4KK moderate Genetic Variation [23]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [24]
Gout DISHC0U7 Limited Genetic Variation [25]
Hepatitis DISXXX35 Limited Genetic Variation [26]
Inflammatory bowel disease DISGN23E Limited Genetic Variation [10]
Maturity-onset diabetes of the young type 2 DISN6STS Limited Biomarker [27]
Monogenic diabetes DISEB8Q0 Limited Genetic Variation [28]
Non-alcoholic fatty liver disease DISDG1NL Limited Biomarker [9]
Psoriasis DIS59VMN Limited Genetic Variation [24]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [24]
Type-1 diabetes DIS7HLUB Limited Genetic Variation [28]
Ulcerative colitis DIS8K27O Limited Genetic Variation [24]
Urolithiasis DISNFTKT Limited Genetic Variation [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Glucokinase regulatory protein (GCKR). [30]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glucokinase regulatory protein (GCKR). [31]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Glucokinase regulatory protein (GCKR). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glucokinase regulatory protein (GCKR). [33]
Quercetin DM3NC4M Approved Quercetin increases the expression of Glucokinase regulatory protein (GCKR). [34]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Glucokinase regulatory protein (GCKR). [35]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Glucokinase regulatory protein (GCKR). [36]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glucokinase regulatory protein (GCKR). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Glucokinase regulatory protein (GCKR). [38]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Glucokinase regulatory protein (GCKR). [39]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Glucokinase regulatory protein (GCKR). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population.Hum Mol Genet. 2011 Oct 1;20(19):3884-92. doi: 10.1093/hmg/ddr301. Epub 2011 Jul 12.
2 Modulation of Glucokinase Regulatory Protein: A Double-Edged Sword?.Trends Mol Med. 2015 Oct;21(10):583-594. doi: 10.1016/j.molmed.2015.08.004.
3 Association between maternal single nucleotide polymorphisms in genes regulating glucose metabolism and risk for neural tube defects in offspring.Birth Defects Res A Clin Mol Teratol. 2015 Jun;103(6):471-8. doi: 10.1002/bdra.23332. Epub 2014 Nov 5.
4 Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases.Front Genet. 2016 Oct 13;7:179. doi: 10.3389/fgene.2016.00179. eCollection 2016.
5 GCKR and PPP1R3B identified as genome-wide significant loci for plasma lactate: the Atherosclerosis Risk in Communities (ARIC) study.Diabet Med. 2016 Jul;33(7):968-75. doi: 10.1111/dme.12971. Epub 2015 Oct 30.
6 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
7 Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: A systematic review and meta-analysis.PLoS One. 2018 Oct 23;13(10):e0206174. doi: 10.1371/journal.pone.0206174. eCollection 2018.
8 Identification of CDC42BPG as a novel susceptibility locus for hyperuricemia in a Japanese population.Mol Genet Genomics. 2018 Apr;293(2):371-379. doi: 10.1007/s00438-017-1394-1. Epub 2017 Nov 9.
9 Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality.Diabetologia. 2020 Feb;63(2):253-260. doi: 10.1007/s00125-019-05024-3. Epub 2019 Nov 11.
10 Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.Nat Genet. 2017 Feb;49(2):256-261. doi: 10.1038/ng.3760. Epub 2017 Jan 9.
11 Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD.PLoS Genet. 2011 Sep;7(9):e1002292. doi: 10.1371/journal.pgen.1002292. Epub 2011 Sep 29.
12 NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects.Hum Mol Genet. 2018 Jun 15;27(12):2214-2223. doi: 10.1093/hmg/ddy124.
13 A genetic screen identifies interferon- effector genes required to suppress hepatitis C virus replication.Gastroenterology. 2013 Jun;144(7):1438-49, 1449.e1-9. doi: 10.1053/j.gastro.2013.02.026. Epub 2013 Feb 24.
14 Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients.Metabolism. 2018 Dec;89:8-17. doi: 10.1016/j.metabol.2018.09.004. Epub 2018 Sep 23.
15 When a Little Bit More Makes the Difference: Expression Levels of GKRP Determines the Subcellular Localization of GK in Tanycytes.Front Neurosci. 2019 Mar 29;13:275. doi: 10.3389/fnins.2019.00275. eCollection 2019.
16 Loci related to metabolic-syndrome pathways including LEPR,HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women's Genome Health Study.Am J Hum Genet. 2008 May;82(5):1185-92. doi: 10.1016/j.ajhg.2008.03.015. Epub 2008 Apr 24.
17 An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels.Diabetes. 2017 Jun;66(6):1723-1728. doi: 10.2337/db16-1384. Epub 2017 Apr 6.
18 TRIB1 and GCKR polymorphisms, lipid levels, and risk of ischemic heart disease in the general population.Arterioscler Thromb Vasc Biol. 2011 Feb;31(2):451-7. doi: 10.1161/ATVBAHA.110.216333. Epub 2010 Nov 11.
19 Lipid regulatory genes polymorphism in children with and without obesity and cardiometabolic risk factors: The CASPIAN-III study.J Res Med Sci. 2018 Feb 20;23:11. doi: 10.4103/jrms.JRMS_911_17. eCollection 2018.
20 Genes related to diabetes may be associated with pancreatic cancer in a population-based case-control study in Minnesota.Pancreas. 2012 Jan;41(1):50-3. doi: 10.1097/MPA.0b013e3182247625.
21 Association between copy-number variation on metabolic phenotypes and HDL-C levels in patients with polycystic ovary syndrome.Mol Biol Rep. 2017 Feb;44(1):51-61. doi: 10.1007/s11033-016-4080-1. Epub 2016 Nov 22.
22 Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.Nat Commun. 2019 Sep 11;10(1):4130. doi: 10.1038/s41467-019-11576-0.
23 Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations.Nat Commun. 2019 Apr 2;10(1):1499. doi: 10.1038/s41467-019-09480-8.
24 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
25 Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.Nat Genet. 2019 Oct;51(10):1459-1474. doi: 10.1038/s41588-019-0504-x. Epub 2019 Oct 2.
26 Genetics of nonalcoholic fatty liver disease.Metabolism. 2016 Aug;65(8):1026-37. doi: 10.1016/j.metabol.2015.08.018. Epub 2015 Sep 1.
27 From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation.Diabetes. 2006 Jun;55(6):1713-22. doi: 10.2337/db05-1513.
28 Genetic variability of GCKR alters lipid profiles in children with monogenic and autoimmune diabetes.Exp Clin Endocrinol Diabetes. 2014 Oct;122(9):503-9. doi: 10.1055/s-0034-1375648. Epub 2014 Jun 11.
29 Novel Risk Loci Identified in a Genome-Wide Association Study of Urolithiasis in a Japanese Population.J Am Soc Nephrol. 2019 May;30(5):855-864. doi: 10.1681/ASN.2018090942. Epub 2019 Apr 11.
30 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
31 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
32 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
35 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
36 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
37 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
38 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
39 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.