General Information of Drug Off-Target (DOT) (ID: OTVSFHTL)

DOT Name Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2)
Synonyms Cysteine-rich secretory protein 11; CRISP-11; LCCL domain-containing cysteine-rich secretory protein 2
Gene Name CRISPLD2
Related Disease
Acute myelogenous leukaemia ( )
Adult glioblastoma ( )
Alzheimer disease ( )
Atopic dermatitis ( )
Autosomal dominant epilepsy with auditory features ( )
Bronchopulmonary dysplasia ( )
Carcinoma of esophagus ( )
Cleft lip ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Congenital diaphragmatic hernia ( )
Cystic fibrosis ( )
Endometriosis ( )
Epilepsy, familial temporal lobe, 1 ( )
Esophageal cancer ( )
Esophageal squamous cell carcinoma ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
Hereditary chronic pancreatitis ( )
Isolated cleft lip ( )
Liposarcoma ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Pancreatitis ( )
Plasma cell myeloma ( )
Primary hyperparathyroidism ( )
Pulmonary fibrosis ( )
Von willebrand disease ( )
Cleft palate ( )
Isolated cleft palate ( )
leukaemia ( )
Leukemia ( )
Subcortical band heterotopia ( )
Tropical pancreatitis ( )
Asthma ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic urticaria ( )
Lung cancer ( )
Lung carcinoma ( )
Pulmonary disease ( )
Type-1/2 diabetes ( )
UniProt ID
CRLD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00188 ; PF03815
Sequence
MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEIL
MLHNKLRGQVQPQASNMEYMTWDDELEKSAAAWASQCIWEHGPTSLLVSIGQNLGAHWGR
YRSPGFHVQSWYDEVKDYTYPYPSECNPWCPERCSGPMCTHYTQIVWATTNKIGCAVNTC
RKMTVWGEVWENAVYFVCNYSPKGNWIGEAPYKNGRPCSECPPSYGGSCRNNLCYREETY
TPKPETDEMNEVETAPIPEENHVWLQPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDRCKG
STCNRYQCPAGCLNHKAKIFGTLFYESSSSICRAAIHYGILDDKGGLVDITRNGKVPFFV
KSERHGVQSLSKYKPSSSFMVSKVKVQDLDCYTTVAQLCPFEKPATHCPRIHCPAHCKDE
PSYWAPVFGTNIYADTSSICKTAVHAGVISNESGGDVDVMPVDKKKTYVGSLRNGVQSES
LGTPRDGKAFRIFAVRQ
Function Promotes matrix assembly.
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [1]
Adult glioblastoma DISVP4LU Strong Biomarker [2]
Alzheimer disease DISF8S70 Strong Biomarker [3]
Atopic dermatitis DISTCP41 Strong Biomarker [4]
Autosomal dominant epilepsy with auditory features DISFZN2O Strong Genetic Variation [5]
Bronchopulmonary dysplasia DISO0BY5 Strong Biomarker [6]
Carcinoma of esophagus DISS6G4D Strong Biomarker [7]
Cleft lip DISV3XW6 Strong Genetic Variation [8]
Colon cancer DISVC52G Strong Biomarker [9]
Colon carcinoma DISJYKUO Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Congenital diaphragmatic hernia DIS0IPVU Strong Altered Expression [11]
Cystic fibrosis DIS2OK1Q Strong Altered Expression [12]
Endometriosis DISX1AG8 Strong Altered Expression [13]
Epilepsy, familial temporal lobe, 1 DISTRYUX Strong Genetic Variation [5]
Esophageal cancer DISGB2VN Strong Biomarker [7]
Esophageal squamous cell carcinoma DIS5N2GV Strong Posttranslational Modification [14]
Glioblastoma multiforme DISK8246 Strong Biomarker [2]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Hereditary chronic pancreatitis DISF0J1Q Strong Genetic Variation [16]
Isolated cleft lip DIS2O2JV Strong Genetic Variation [8]
Liposarcoma DIS8IZVM Strong Altered Expression [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [7]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [19]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [20]
Pancreatitis DIS0IJEF Strong Biomarker [21]
Plasma cell myeloma DIS0DFZ0 Strong Altered Expression [22]
Primary hyperparathyroidism DISB4U1Q Strong Genetic Variation [23]
Pulmonary fibrosis DISQKVLA Strong Biomarker [24]
Von willebrand disease DIS3TZCH Strong Biomarker [25]
Cleft palate DIS6G5TF moderate Genetic Variation [8]
Isolated cleft palate DISV80CD moderate Genetic Variation [8]
leukaemia DISS7D1V moderate Biomarker [26]
Leukemia DISNAKFL moderate Biomarker [26]
Subcortical band heterotopia DISHN7JS moderate Biomarker [27]
Tropical pancreatitis DIS3OT4T moderate Genetic Variation [28]
Asthma DISW9QNS Limited Biomarker [29]
Breast cancer DIS7DPX1 Limited Biomarker [30]
Breast carcinoma DIS2UE88 Limited Biomarker [30]
Chronic urticaria DISMBYB0 Limited Biomarker [31]
Lung cancer DISCM4YA Limited Biomarker [32]
Lung carcinoma DISTR26C Limited Biomarker [32]
Pulmonary disease DIS6060I Limited Biomarker [33]
Type-1/2 diabetes DISIUHAP Limited Biomarker [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [35]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [36]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [37]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [38]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [39]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [40]
Triclosan DMZUR4N Approved Triclosan increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [41]
Progesterone DMUY35B Approved Progesterone increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [42]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [43]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [44]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [45]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [46]
Mifepristone DMGZQEF Approved Mifepristone decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [47]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [48]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [49]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [50]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [51]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [52]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [53]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [54]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [55]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [56]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2). [57]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Serum proteomic spectral characteristics of acute myeloid leukemia and their clinical significance.Genet Mol Res. 2017 Apr 13;16(2). doi: 10.4238/gmr16029172.
2 cDNA cloning of a novel trypsin inhibitor with similarity to pathogenesis-related proteins, and its frequent expression in human brain cancer cells.Biochim Biophys Acta. 1998 Jan 21;1395(2):202-8. doi: 10.1016/s0167-4781(97)00149-8.
3 Evolutionary origin of a Kunitz-type trypsin inhibitor domain inserted in the amyloid beta precursor protein of Alzheimer's disease.J Mol Evol. 1992 Jun;34(6):536-43. doi: 10.1007/BF00160466.
4 Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis.J Allergy Clin Immunol. 2014 Oct;134(4):781-791.e1. doi: 10.1016/j.jaci.2014.05.048. Epub 2014 Aug 15.
5 Molecular basis of Mendelian idiopathic epilepsies.Ann Med. 2004;36(2):89-97. doi: 10.1080/07853890310019952.
6 LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.Am J Physiol Lung Cell Mol Physiol. 2015 Feb 15;308(4):L391-402. doi: 10.1152/ajplung.00119.2014. Epub 2014 Dec 5.
7 Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo.World J Gastroenterol. 2013 Jul 14;19(26):4127-36. doi: 10.3748/wjg.v19.i26.4127.
8 Association Between CRISPLD2 Polymorphisms and the Risk of Nonsyndromic Clefts of the Lip and/or Palate: A Meta-analysis.Cleft Palate Craniofac J. 2018 Mar;55(3):328-334. doi: 10.1177/1055665617738995. Epub 2017 Dec 14.
9 Trypsin is produced by and activates protease-activated receptor-2 in human cancer colon cells: evidence for new autocrine loop.Life Sci. 2002 Feb 8;70(12):1359-67. doi: 10.1016/s0024-3205(01)01519-3.
10 Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer.Int J Biochem Cell Biol. 2014 Feb;47:68-75. doi: 10.1016/j.biocel.2013.11.022. Epub 2013 Dec 11.
11 The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia.J Pediatr Surg. 2019 May;54(5):937-944. doi: 10.1016/j.jpedsurg.2019.01.024. Epub 2019 Jan 31.
12 Deficiency of kallikrein activity in plasma of patients with cystic fibrosis.Science. 1972 Aug 18;177(4049):610-1. doi: 10.1126/science.177.4049.610.
13 CRISPLD2 is a target of progesterone receptor and its expression is decreased in women with endometriosis.PLoS One. 2014 Jun 23;9(6):e100481. doi: 10.1371/journal.pone.0100481. eCollection 2014.
14 Sporamin suppresses growth of human esophageal squamous cell carcinoma cells by inhibition of NFB via an AKTindependent pathway.Mol Med Rep. 2017 Dec;16(6):9620-9626. doi: 10.3892/mmr.2017.7772. Epub 2017 Oct 12.
15 Clinical and prognostic significance of urinary trypsin inhibitor in patients with hepatocellular carcinoma after hepatectomy.Ann Surg Oncol. 2009 Oct;16(10):2805-17. doi: 10.1245/s10434-009-0622-2. Epub 2009 Jul 28.
16 Absence of PRSS1 mutations and association of SPINK1 trypsin inhibitor mutations in hereditary and non-hereditary chronic pancreatitis.Gut. 2004 May;53(5):723-8. doi: 10.1136/gut.2003.026526.
17 A study of inter-alpha-trypsin inhibitor chains expression in liposarcomas.Eur J Surg Oncol. 2003 Oct;29(8):665-9. doi: 10.1016/s0748-7983(03)00135-5.
18 Lgl1 controls NG2 endocytic pathway to regulate oligodendrocyte differentiation and asymmetric cell division and gliomagenesis.Nat Commun. 2018 Aug 21;9(1):2862. doi: 10.1038/s41467-018-05099-3.
19 LUTI: a double-function inhibitor isolated from naked flax seeds.Acta Biochim Biophys Sin (Shanghai). 2019 Sep 6;51(10):989-996. doi: 10.1093/abbs/gmz087.
20 MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1.Oncotarget. 2016 Mar 29;7(13):16703-15. doi: 10.18632/oncotarget.7697.
21 Characterization of dsRNA-induced pancreatitis model reveals the regulatory role of IFN regulatory factor 2 (Irf2) in trypsinogen5 gene transcription.Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18766-71. doi: 10.1073/pnas.1116273108. Epub 2011 Oct 31.
22 Expression of a buckwheat trypsin inhibitor gene in Escherichia coli and its effect on multiple myeloma IM-9 cell proliferation.Acta Biochim Biophys Sin (Shanghai). 2007 Sep;39(9):701-7. doi: 10.1111/j.1745-7270.2007.00332.x.
23 Pancreatitis risk in primary hyperparathyroidism: relation to mutations in the SPINK1 trypsin inhibitor (N34S) and the cystic fibrosis gene.Am J Gastroenterol. 2008 Feb;103(2):368-74. doi: 10.1111/j.1572-0241.2007.01695.x. Epub 2007 Dec 12.
24 Therapeutic effect of ulinastatin on pulmonary fibrosis via downregulation of TGF?, TNF?and NFB.Mol Med Rep. 2018 Jan;17(1):1717-1723. doi: 10.3892/mmr.2017.8056. Epub 2017 Nov 14.
25 The von Willebrand factor D'D3 assembly and structural principles for factor VIII binding and concatemer biogenesis.Blood. 2019 Apr 4;133(14):1523-1533. doi: 10.1182/blood-2018-10-876300. Epub 2019 Jan 14.
26 Isolation and Characterization of a Phaseolus vulgaris Trypsin Inhibitor with Antiproliferative Activity on Leukemia and Lymphoma Cells.Molecules. 2017 Jan 23;22(1):187. doi: 10.3390/molecules22010187.
27 Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice.Neuroscience. 2019 Feb 21;400:132-145. doi: 10.1016/j.neuroscience.2018.12.039. Epub 2018 Dec 28.
28 Divergent roles of SPINK1 and PRSS2 variants in tropical calcific pancreatitis.Pancreatology. 2009;9(1-2):145-9. doi: 10.1159/000178885. Epub 2008 Dec 13.
29 Whole Genome Sequencing Identifies CRISPLD2 as a Lung Function Gene in Children With Asthma.Chest. 2019 Dec;156(6):1068-1079. doi: 10.1016/j.chest.2019.08.2202. Epub 2019 Sep 23.
30 ITIH5 mediates epigenetic reprogramming of breast cancer cells.Mol Cancer. 2017 Feb 23;16(1):44. doi: 10.1186/s12943-017-0610-2.
31 Protease inhibitor profiles in urticaria and angio-oedema.Br J Dermatol. 1980 Jul;103(1):33-9. doi: 10.1111/j.1365-2133.1980.tb15835.x.
32 Immune complexome analysis reveals the specific and frequent presence of immune complex antigens in lung cancer patients: A pilot study.Int J Cancer. 2017 Jan 15;140(2):370-380. doi: 10.1002/ijc.30455. Epub 2016 Oct 17.
33 Prenatal retinoic acid treatment upregulates late gestation lung protein 1 in the nitrofen-induced hypoplastic lung in late gestation.Pediatr Surg Int. 2011 Feb;27(2):125-9. doi: 10.1007/s00383-010-2783-2.
34 Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications.J Diabetes Complications. 2017 Jan;31(1):149-155. doi: 10.1016/j.jdiacomp.2016.10.013. Epub 2016 Oct 17.
35 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
36 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
39 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
40 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
41 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
42 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
43 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
44 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
45 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
46 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
47 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
48 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
49 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
50 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
51 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
52 Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015 May 1;136(9):2055-64.
53 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
54 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
55 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
56 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
57 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.