General Information of Drug Off-Target (DOT) (ID: OTY5HZN5)

DOT Name Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1)
Synonyms LIG-1
Gene Name LRIG1
Related Disease
Chronic renal failure ( )
Malignant glioma ( )
Medullary thyroid gland carcinoma ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid gland papillary carcinoma ( )
Thyroid tumor ( )
Adenoma ( )
Adult glioblastoma ( )
Advanced cancer ( )
Atrial fibrillation ( )
B-cell neoplasm ( )
Breast neoplasm ( )
Cardiovascular disease ( )
Central nervous system neoplasm ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal neoplasm ( )
Dermatitis ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Head and neck cancer ( )
Head and neck carcinoma ( )
Kidney neoplasm ( )
Neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
Rheumatoid arthritis ( )
Skin neoplasm ( )
Squamous cell carcinoma ( )
Stomach cancer ( )
Breast cancer ( )
Colon carcinoma ( )
Familial atrial fibrillation ( )
Nasopharyngeal carcinoma ( )
Non-small-cell lung cancer ( )
Small lymphocytic lymphoma ( )
Breast carcinoma ( )
Glioma ( )
Melanoma ( )
Metastatic malignant neoplasm ( )
UniProt ID
LRIG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4U7L; 4U7M
Pfam ID
PF07679 ; PF13927 ; PF12799 ; PF13855 ; PF01463
Sequence
MARPVRGGLGAPRRSPCLLLLWLLLLRLEPVTAAAGPRAPCAAACTCAGDSLDCGGRGLA
ALPGDLPSWTRSLNLSYNKLSEIDPAGFEDLPNLQEVYLNNNELTAVPSLGAASSHVVSL
FLQHNKIRSVEGSQLKAYLSLEVLDLSLNNITEVRNTCFPHGPPIKELNLAGNRIGTLEL
GAFDGLSRSLLTLRLSKNRITQLPVRAFKLPRLTQLDLNRNRIRLIEGLTFQGLNSLEVL
KLQRNNISKLTDGAFWGLSKMHVLHLEYNSLVEVNSGSLYGLTALHQLHLSNNSIARIHR
KGWSFCQKLHELVLSFNNLTRLDEESLAELSSLSVLRLSHNSISHIAEGAFKGLRSLRVL
DLDHNEISGTIEDTSGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLNLGGNAIRS
VQFDAFVKMKNLKELHISSDSFLCDCQLKWLPPWLIGRMLQAFVTATCAHPESLKGQSIF
SVPPESFVCDDFLKPQIITQPETTMAMVGKDIRFTCSAASSSSSPMTFAWKKDNEVLTNA
DMENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITNHFGSTYSHKARLTVNVLPS
FTKTPHDITIRTTTMARLECAATGHPNPQIAWQKDGGTDFPAARERRMHVMPDDDVFFIT
DVKIDDAGVYSCTAQNSAGSISANATLTVLETPSLVVPLEDRVVSVGETVALQCKATGNP
PPRITWFKGDRPLSLTERHHLTPDNQLLVVQNVVAEDAGRYTCEMSNTLGTERAHSQLSV
LPAAGCRKDGTTVGIFTIAVVSSIVLTSLVWVCIIYQTRKKSEEYSVTNTDETVVPPDVP
SYLSSQGTLSDRQETVVRTEGGPQANGHIESNGVCPRDASHFPEPDTHSVACRQPKLCAG
SAYHKEPWKAMEKAEGTPGPHKMEHGGRVVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPS
APNGPEPGGSDQEHSPHHQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKPMASLDGKGD
SSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLVSNGHLPKACDASPESTPLTGQLP
GKQRVPLLLAPKS
Function Acts as a feedback negative regulator of signaling by receptor tyrosine kinases, through a mechanism that involves enhancement of receptor ubiquitination and accelerated intracellular degradation.
Tissue Specificity Widely expressed.
Reactome Pathway
Negative regulation of MET activity (R-HSA-6807004 )
Signaling by EGFR (R-HSA-177929 )

Molecular Interaction Atlas (MIA) of This DOT

47 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
Malignant glioma DISFXKOV Definitive Biomarker [2]
Medullary thyroid gland carcinoma DISHBL3K Definitive Altered Expression [3]
Thyroid cancer DIS3VLDH Definitive Genetic Variation [3]
Thyroid gland carcinoma DISMNGZ0 Definitive Genetic Variation [3]
Thyroid gland papillary carcinoma DIS48YMM Definitive Altered Expression [3]
Thyroid tumor DISLVKMD Definitive Genetic Variation [3]
Adenoma DIS78ZEV Strong Biomarker [4]
Adult glioblastoma DISVP4LU Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [5]
Atrial fibrillation DIS15W6U Strong Genetic Variation [6]
B-cell neoplasm DISVY326 Strong Altered Expression [7]
Breast neoplasm DISNGJLM Strong Genetic Variation [8]
Cardiovascular disease DIS2IQDX Strong Biomarker [9]
Central nervous system neoplasm DISFC18W Strong Genetic Variation [10]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [11]
Colon cancer DISVC52G Strong Biomarker [12]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [13]
Colorectal cancer DISNH7P9 Strong Genetic Variation [13]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [13]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [13]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [13]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [13]
Dermatitis DISY5SZC Strong Biomarker [14]
Gastric cancer DISXGOUK Strong Altered Expression [15]
Glioblastoma multiforme DISK8246 Strong Altered Expression [2]
Head and neck cancer DISBPSQZ Strong Altered Expression [16]
Head and neck carcinoma DISOU1DS Strong Altered Expression [16]
Kidney neoplasm DISBNZTN Strong Altered Expression [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Prostate cancer DISF190Y Strong Biomarker [19]
Prostate carcinoma DISMJPLE Strong Biomarker [19]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [11]
Rheumatoid arthritis DISTSB4J Strong Biomarker [9]
Skin neoplasm DIS16DDV Strong Altered Expression [20]
Squamous cell carcinoma DISQVIFL Strong Biomarker [21]
Stomach cancer DISKIJSX Strong Altered Expression [15]
Breast cancer DIS7DPX1 moderate Altered Expression [22]
Colon carcinoma DISJYKUO moderate Biomarker [12]
Familial atrial fibrillation DISL4AGF moderate Biomarker [6]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [23]
Non-small-cell lung cancer DIS5Y6R9 moderate Biomarker [24]
Small lymphocytic lymphoma DIS30POX moderate Altered Expression [25]
Breast carcinoma DIS2UE88 Limited Altered Expression [22]
Glioma DIS5RPEH Limited Altered Expression [26]
Melanoma DIS1RRCY Limited Biomarker [27]
Metastatic malignant neoplasm DIS86UK6 Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [28]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [29]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [30]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [31]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [32]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [33]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [34]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [35]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [36]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [37]
Testosterone DM7HUNW Approved Testosterone increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [36]
Progesterone DMUY35B Approved Progesterone increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [38]
Menadione DMSJDTY Approved Menadione affects the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [39]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [37]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [40]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [41]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [42]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [43]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [44]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [46]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1). [45]
------------------------------------------------------------------------------------

References

1 Identification of CDC42BPG as a novel susceptibility locus for hyperuricemia in a Japanese population.Mol Genet Genomics. 2018 Apr;293(2):371-379. doi: 10.1007/s00438-017-1394-1. Epub 2017 Nov 9.
2 Lrig1 is a haploinsufficient tumor suppressor gene in malignant glioma.Oncogenesis. 2018 Feb 2;7(2):13. doi: 10.1038/s41389-017-0012-8.
3 LRIG1 negatively regulates RET mutants and is downregulated in thyroid cancer.Int J Oncol. 2018 Apr;52(4):1189-1197. doi: 10.3892/ijo.2018.4273. Epub 2018 Feb 9.
4 LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor.Br J Cancer. 2013 May 14;108(9):1765-70. doi: 10.1038/bjc.2013.138. Epub 2013 Apr 4.
5 A protein interaction network centered on leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) regulates growth factor receptors.J Biol Chem. 2018 Mar 2;293(9):3421-3435. doi: 10.1074/jbc.M117.807487. Epub 2018 Jan 9.
6 Multi-ethnic genome-wide association study for atrial fibrillation.Nat Genet. 2018 Jun 11;50(9):1225-1233. doi: 10.1038/s41588-018-0133-9.
7 Investigation of the association between miR?81b, Bcl? and LRIG1 in oral verrucous carcinoma.Mol Med Rep. 2016 Oct;14(4):2991-6. doi: 10.3892/mmr.2016.5608. Epub 2016 Aug 9.
8 Loss of LRIG1 locus increases risk of early and late relapse of stage I/II breast cancer.Cancer Res. 2014 Jun 1;74(11):2928-35. doi: 10.1158/0008-5472.CAN-13-2112.
9 Influence of coronary artery disease and subclinical atherosclerosis related polymorphisms on the risk of atherosclerosis in rheumatoid arthritis.Sci Rep. 2017 Jan 6;7:40303. doi: 10.1038/srep40303.
10 Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors.Nat Genet. 2017 May;49(5):789-794. doi: 10.1038/ng.3823. Epub 2017 Mar 27.
11 LRIG1 and epidermal growth factor receptor in renal cell carcinoma: a quantitative RT--PCR and immunohistochemical analysis.Br J Cancer. 2003 Oct 6;89(7):1285-9. doi: 10.1038/sj.bjc.6601208.
12 A Unique Nonsaccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation.Mol Cancer Ther. 2019 Jan;18(1):51-61. doi: 10.1158/1535-7163.MCT-18-0104. Epub 2018 Oct 18.
13 Novel Common Genetic Susceptibility Loci for Colorectal Cancer.J Natl Cancer Inst. 2019 Feb 1;111(2):146-157. doi: 10.1093/jnci/djy099.
14 Hair eruption initiates and commensal skin microbiota aggravate adverse events of anti-EGFR therapy.Sci Transl Med. 2019 Dec 11;11(522):eaax2693. doi: 10.1126/scitranslmed.aax2693.
15 Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance.Cancer Sci. 2018 Apr;109(4):1044-1054. doi: 10.1111/cas.13538. Epub 2018 Mar 23.
16 LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.Oncogene. 2014 Mar 13;33(11):1375-84. doi: 10.1038/onc.2013.98. Epub 2013 Apr 29.
17 Cloning of a new familial t(3;8) translocation associated with conventional renal cell carcinoma reveals a 5 kb microdeletion and no gene involved in the rearrangement.Hum Mol Genet. 2004 May 1;13(9):983-90. doi: 10.1093/hmg/ddh111. Epub 2004 Mar 11.
18 IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1(+) stem cells.J Exp Med. 2019 Jan 7;216(1):195-214. doi: 10.1084/jem.20171849. Epub 2018 Dec 21.
19 LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer.Nat Commun. 2019 Dec 2;10(1):5494. doi: 10.1038/s41467-019-13532-4.
20 A role for Rac1 activity in malignant progression of sebaceous skin tumors.Oncogene. 2015 Oct;34(43):5505-12. doi: 10.1038/onc.2014.471. Epub 2015 Feb 9.
21 HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.Front Microbiol. 2018 Mar 26;9:546. doi: 10.3389/fmicb.2018.00546. eCollection 2018.
22 Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth.Oncogene. 2016 Mar 3;35(9):1143-52. doi: 10.1038/onc.2015.169. Epub 2015 Jul 6.
23 LRIG and cancer prognosis.Acta Oncol. 2014 Sep;53(9):1135-42. doi: 10.3109/0284186X.2014.953258. Epub 2014 Sep 2.
24 Tumor-suppressive effect of LRIG1, a negative regulator of ErbB, in non-small cell lung cancer harboring mutant EGFR.Carcinogenesis. 2018 May 3;39(5):719-727. doi: 10.1093/carcin/bgy044.
25 Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL).PLoS One. 2009 Sep 25;4(9):e7169. doi: 10.1371/journal.pone.0007169.
26 Resveratrol inhibits glioma cell growth via targeting LRIG1.J BUON. 2018 Mar-Apr;23(2):403-409.
27 Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling.J Exp Clin Cancer Res. 2018 Aug 6;37(1):184. doi: 10.1186/s13046-018-0844-x.
28 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
29 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
30 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
31 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
32 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
33 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
34 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
37 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
38 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
39 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
40 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
41 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
42 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
43 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
44 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
45 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
46 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
47 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.