General Information of Drug Off-Target (DOT) (ID: OTZNPWWX)

DOT Name Fermitin family homolog 2 (FERMT2)
Synonyms Kindlin-2; Mitogen-inducible gene 2 protein; MIG-2; Pleckstrin homology domain-containing family C member 1; PH domain-containing family C member 1
Gene Name FERMT2
Related Disease
Advanced cancer ( )
Invasive breast carcinoma ( )
Matthew-Wood syndrome ( )
Nephropathy ( )
Alzheimer disease ( )
Amyloidosis ( )
Angle-closure glaucoma ( )
Bladder cancer ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of esophagus ( )
Cardiac failure ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Esophageal cancer ( )
Gastric cancer ( )
Glioma ( )
Hepatocellular carcinoma ( )
Hypertrophic cardiomyopathy ( )
Kidney failure ( )
Lipodystrophy ( )
Lung adenocarcinoma ( )
MASS syndrome ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Obesity ( )
Osteosarcoma ( )
Pancreatic cancer ( )
Pancreatic ductal carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
Stomach cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Choriocarcinoma ( )
Primary angle-closure glaucoma ( )
Chondrosarcoma ( )
Cutaneous melanoma ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Leiomyoma ( )
Leiomyosarcoma ( )
Melanoma ( )
Renal fibrosis ( )
Uterine fibroids ( )
UniProt ID
FERM2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LGX; 2LKO; 2MSU; 4F7H; 6U4N; 6XTJ
Pfam ID
PF00373 ; PF18124 ; PF00169
Sequence
MALDGIRMPDGCYADGTWELSVHVTDLNRDVTLRVTGEVHIGGVMLKLVEKLDVKKDWSD
HALWWEKKRTWLLKTHWTLDKYGIQADAKLQFTPQHKLLRLQLPNMKYVKVKVNFSDRVF
KAVSDICKTFNIRHPEELSLLKKPRDPTKKKKKKLDDQSEDEALELEGPLITPGSGSIYS
SPGLYSKTMTPTYDAHDGSPLSPTSAWFGDSALSEGNPGILAVSQPITSPEILAKMFKPQ
ALLDKAKINQGWLDSSRSLMEQDVKENEALLLRFKYYSFFDLNPKYDAIRINQLYEQAKW
AILLEEIECTEEEMMMFAALQYHINKLSIMTSENHLNNSDKEVDEVDAALSDLEITLEGG
KTSTILGDITSIPELADYIKVFKPKKLTLKGYKQYWCTFKDTSISCYKSKEESSGTPAHQ
MNLRGCEVTPDVNISGQKFNIKLLIPVAEGMNEIWLRCDNEKQYAHWMAACRLASKGKTM
ADSSYNLEVQNILSFLKMQHLNPDPQLIPEQITTDITPECLVSPRYLKKYKNKQITARIL
EAHQNVAQMSLIEAKMRFIQAWQSLPEFGITHFIARFQGGKKEELIGIAYNRLIRMDAST
GDAIKTWRFSNMKQWNVNWEIKMVTVEFADEVRLSFICTEVDCKVVHEFIGGYIFLSTRA
KDQNESLDEEMFYKLTSGWV
Function
Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling.
Tissue Specificity Ubiquitous. Found in numerous tumor tissues.
Reactome Pathway
RAC1 GTPase cycle (R-HSA-9013149 )
RAC3 GTPase cycle (R-HSA-9013423 )
Cell-extracellular matrix interactions (R-HSA-446353 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Biomarker [1]
Invasive breast carcinoma DISANYTW Definitive Biomarker [2]
Matthew-Wood syndrome DISA7HR7 Definitive Altered Expression [3]
Nephropathy DISXWP4P Definitive Biomarker [4]
Alzheimer disease DISF8S70 Strong Biomarker [5]
Amyloidosis DISHTAI2 Strong Genetic Variation [6]
Angle-closure glaucoma DISZ95KY Strong Genetic Variation [7]
Bladder cancer DISUHNM0 Strong Altered Expression [8]
Bone osteosarcoma DIST1004 Strong Altered Expression [8]
Breast cancer DIS7DPX1 Strong Biomarker [9]
Breast carcinoma DIS2UE88 Strong Biomarker [9]
Carcinoma of esophagus DISS6G4D Strong Altered Expression [10]
Cardiac failure DISDC067 Strong Biomarker [11]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [8]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [12]
Congestive heart failure DIS32MEA Strong Biomarker [11]
Esophageal cancer DISGB2VN Strong Altered Expression [10]
Gastric cancer DISXGOUK Strong Altered Expression [8]
Glioma DIS5RPEH Strong Altered Expression [8]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [8]
Hypertrophic cardiomyopathy DISQG2AI Strong Biomarker [11]
Kidney failure DISOVQ9P Strong Altered Expression [13]
Lipodystrophy DIS3SGVD Strong Altered Expression [14]
Lung adenocarcinoma DISD51WR Strong Biomarker [15]
MASS syndrome DISI3721 Strong Biomarker [14]
Neoplasm DISZKGEW Strong Biomarker [15]
Neoplasm of esophagus DISOLKAQ Strong Altered Expression [10]
Obesity DIS47Y1K Strong Genetic Variation [16]
Osteosarcoma DISLQ7E2 Strong Altered Expression [8]
Pancreatic cancer DISJC981 Strong Biomarker [3]
Pancreatic ductal carcinoma DIS26F9Q Strong Altered Expression [8]
Prostate cancer DISF190Y Strong Genetic Variation [17]
Prostate carcinoma DISMJPLE Strong Genetic Variation [18]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [19]
Stomach cancer DISKIJSX Strong Altered Expression [8]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [8]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [8]
Choriocarcinoma DISDBVNL moderate Altered Expression [20]
Primary angle-closure glaucoma DISX8UKZ moderate Genetic Variation [7]
Chondrosarcoma DIS4I7JB Limited Altered Expression [8]
Cutaneous melanoma DIS3MMH9 Limited Biomarker [21]
Epithelial ovarian cancer DIS56MH2 Limited Altered Expression [22]
Esophageal squamous cell carcinoma DIS5N2GV Limited Biomarker [23]
Leiomyoma DISLDDFN Limited Altered Expression [24]
Leiomyosarcoma DIS6COXM Limited Genetic Variation [24]
Melanoma DIS1RRCY Limited Biomarker [25]
Renal fibrosis DISMHI3I Limited Biomarker [26]
Uterine fibroids DISBZRMJ Limited Altered Expression [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Fermitin family homolog 2 (FERMT2) affects the response to substance of Fluorouracil. [47]
Topotecan DMP6G8T Approved Fermitin family homolog 2 (FERMT2) affects the response to substance of Topotecan. [47]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fermitin family homolog 2 (FERMT2). [27]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Fermitin family homolog 2 (FERMT2). [28]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Fermitin family homolog 2 (FERMT2). [29]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Fermitin family homolog 2 (FERMT2). [30]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Fermitin family homolog 2 (FERMT2). [31]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Fermitin family homolog 2 (FERMT2). [32]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Fermitin family homolog 2 (FERMT2). [33]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Fermitin family homolog 2 (FERMT2). [34]
Progesterone DMUY35B Approved Progesterone increases the expression of Fermitin family homolog 2 (FERMT2). [35]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Fermitin family homolog 2 (FERMT2). [36]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Fermitin family homolog 2 (FERMT2). [37]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Fermitin family homolog 2 (FERMT2). [38]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Fermitin family homolog 2 (FERMT2). [39]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Fermitin family homolog 2 (FERMT2). [40]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Fermitin family homolog 2 (FERMT2). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fermitin family homolog 2 (FERMT2). [43]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Fermitin family homolog 2 (FERMT2). [44]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Fermitin family homolog 2 (FERMT2). [45]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Fermitin family homolog 2 (FERMT2). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Fermitin family homolog 2 (FERMT2). [42]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Fermitin family homolog 2 (FERMT2). [42]
------------------------------------------------------------------------------------

References

1 Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/-catenin signaling.J Exp Clin Cancer Res. 2017 Sep 29;36(1):134. doi: 10.1186/s13046-017-0603-4.
2 Kindlin-2 could influence breast nodule elasticity and improve lymph node metastasis in invasive breast cancer.Sci Rep. 2017 Jul 28;7(1):6753. doi: 10.1038/s41598-017-07075-1.
3 Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer.Cancer Lett. 2017 Apr 1;390:103-114. doi: 10.1016/j.canlet.2017.01.008. Epub 2017 Jan 16.
4 Kindlin-2 mediates activation of TGF-/Smad signaling and renal fibrosis.J Am Soc Nephrol. 2013 Sep;24(9):1387-98. doi: 10.1681/ASN.2012101041. Epub 2013 May 30.
5 Candidate-based screening via gene modulation in human neurons and astrocytes implicates FERMT2 in A and TAU proteostasis.Hum Mol Genet. 2019 Mar 1;28(5):718-735. doi: 10.1093/hmg/ddy376.
6 Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis.JAMA Neurol. 2018 Mar 1;75(3):328-341. doi: 10.1001/jamaneurol.2017.4198.
7 Integration of Genetic and Biometric Risk Factors for Detection of Primary Angle Closure Glaucoma.Am J Ophthalmol. 2019 Dec;208:160-165. doi: 10.1016/j.ajo.2019.07.022. Epub 2019 Aug 1.
8 Prognostic value of Kindlin-2 expression in patients with solid tumors: a meta-analysis.Cancer Cell Int. 2018 Oct 22;18:166. doi: 10.1186/s12935-018-0651-7. eCollection 2018.
9 Integrin-interacting protein Kindlin-2 induces mammary tumors in transgenic mice.Sci China Life Sci. 2019 Feb;62(2):225-234. doi: 10.1007/s11427-018-9336-6. Epub 2018 Nov 19.
10 Differential expression of Kindlin-1 and Kindlin-2 correlates with esophageal cancer progression and epidemiology.Sci China Life Sci. 2017 Nov;60(11):1214-1222. doi: 10.1007/s11427-016-9044-5. Epub 2017 Jun 29.
11 Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy.Cell Death Dis. 2019 Nov 26;10(12):890. doi: 10.1038/s41419-019-2121-0.
12 Kindlin-2 inhibited the growth and migration of colorectal cancer cells.Tumour Biol. 2015 Jun;36(6):4107-14. doi: 10.1007/s13277-015-3044-8. Epub 2015 Jan 30.
13 Kindlin-2 Association with Rho GDP-Dissociation Inhibitor Suppresses Rac1 Activation and Podocyte Injury.J Am Soc Nephrol. 2017 Dec;28(12):3545-3562. doi: 10.1681/ASN.2016091021. Epub 2017 Aug 3.
14 Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2.JCI Insight. 2019 Jul 11;4(13):e128405. doi: 10.1172/jci.insight.128405. eCollection 2019 Jul 11.
15 Kindlin-2 links mechano-environment to proline synthesis and tumor growth.Nat Commun. 2019 Feb 19;10(1):845. doi: 10.1038/s41467-019-08772-3.
16 Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer's disease and obesity.Am J Med Genet B Neuropsychiatr Genet. 2014 Jun;165B(4):283-93. doi: 10.1002/ajmg.b.32234. Epub 2014 May 1.
17 Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array.Nat Genet. 2013 Apr;45(4):385-91, 391e1-2. doi: 10.1038/ng.2560.
18 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
19 Kindlin? promotes clear cell renal cell carcinoma progression through the Wnt signaling pathway.Oncol Rep. 2017 Sep;38(3):1551-1560. doi: 10.3892/or.2017.5789. Epub 2017 Jul 4.
20 Lysis Buffer Choices Are Key Considerations to Ensure Effective Sample Solubilization for Protein Electrophoresis.Methods Mol Biol. 2019;1855:61-72. doi: 10.1007/978-1-4939-8793-1_5.
21 Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma.Aging (Albany NY). 2019 Aug 19;11(16):6273-6285. doi: 10.18632/aging.102187. Epub 2019 Aug 19.
22 Kindlin-2 inhibits serous epithelial ovarian cancer peritoneal dissemination and predicts patient outcomes.Biochem Biophys Res Commun. 2014 Mar 28;446(1):187-94. doi: 10.1016/j.bbrc.2014.02.087. Epub 2014 Feb 27.
23 miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2.Carcinogenesis. 2019 Jul 20;40(7):883-892. doi: 10.1093/carcin/bgy189.
24 Expression of the mitogen-inducible gene-2 (mig-2) is elevated in human uterine leiomyomas but not in leiomyosarcomas.Hum Pathol. 2004 Jan;35(1):55-60. doi: 10.1016/j.humpath.2003.08.019.
25 p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors.Cancer Cell. 2019 Jan 14;35(1):46-63.e10. doi: 10.1016/j.ccell.2018.11.008. Epub 2018 Dec 20.
26 Kindlin-2 Inhibits the Hippo Signaling Pathway by Promoting Degradation of MOB1.Cell Rep. 2019 Dec 10;29(11):3664-3677.e5. doi: 10.1016/j.celrep.2019.11.035.
27 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
28 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
29 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
30 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
31 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
32 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
33 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
34 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
35 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
36 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
37 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
38 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
39 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
40 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
41 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
42 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
43 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
44 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
45 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
46 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
47 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.