General Information of Drug Off-Target (DOT) (ID: OTZPJ3GX)

DOT Name Receptor-type tyrosine-protein phosphatase delta (PTPRD)
Synonyms Protein-tyrosine phosphatase delta; R-PTP-delta; EC 3.1.3.48
Gene Name PTPRD
Related Disease
Neuroblastoma ( )
Advanced cancer ( )
Atopic dermatitis ( )
B-cell lymphoma ( )
Breast cancer ( )
Breast neoplasm ( )
Chromosomal disorder ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Endometrial cancer ( )
Endometriosis ( )
Epilepsy ( )
Esophageal squamous cell carcinoma ( )
Ewing sarcoma ( )
Gastric adenocarcinoma ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
High blood pressure ( )
Hyperinsulinemia ( )
Laryngeal squamous cell carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Major depressive disorder ( )
Mood disorder ( )
Nephrotic syndrome ( )
Non-alcoholic fatty liver disease ( )
Squamous cell carcinoma ( )
Type-1/2 diabetes ( )
Asthma ( )
Attention deficit hyperactivity disorder ( )
Colon adenocarcinoma ( )
Endometrial carcinoma ( )
Narcolepsy ( )
Colorectal neoplasm ( )
Melanoma ( )
Non-small-cell lung cancer ( )
Small-cell lung cancer ( )
Acute myelogenous leukaemia ( )
Breast carcinoma ( )
Coronary heart disease ( )
Cutaneous squamous cell carcinoma ( )
Gout ( )
MALT lymphoma ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
UniProt ID
PTPRD_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1X5Z; 2DLH; 2YD6; 2YD7; 4RCA; 5WY8; 5XNP; 6X3A
EC Number
3.1.3.48
Pfam ID
PF00041 ; PF07679 ; PF13927 ; PF00102
Sequence
MVHVARLLLLLLTFFLRTDAETPPRFTRTPVDQTGVSGGVASFICQATGDPRPKIVWNKK
GKKVSNQRFEVIEFDDGSGSVLRIQPLRTPRDEAIYECVASNNVGEISVSTRLTVLREDQ
IPRGFPTIDMGPQLKVVERTRTATMLCAASGNPDPEITWFKDFLPVDTSNNNGRIKQLRS
ESIGGTPIRGALQIEQSEESDQGKYECVATNSAGTRYSAPANLYVRELREVRRVPPRFSI
PPTNHEIMPGGSVNITCVAVGSPMPYVKWMLGAEDLTPEDDMPIGRNVLELNDVRQSANY
TCVAMSTLGVIEAIAQITVKALPKPPGTPVVTESTATSITLTWDSGNPEPVSYYIIQHKP
KNSEELYKEIDGVATTRYSVAGLSPYSDYEFRVVAVNNIGRGPPSEPVLTQTSEQAPSSA
PRDVQARMLSSTTILVQWKEPEEPNGQIQGYRVYYTMDPTQHVNNWMKHNVADSQITTIG
NLVPQKTYSVKVLAFTSIGDGPLSSDIQVITQTGVPGQPLNFKAEPESETSILLSWTPPR
SDTIANYELVYKDGEHGEEQRITIEPGTSYRLQGLKPNSLYYFRLAARSPQGLGASTAEI
SARTMQSKPSAPPQDISCTSPSSTSILVSWQPPPVEKQNGIITEYSIKYTAVDGEDDKPH
EILGIPSDTTKYLLEQLEKWTEYRITVTAHTDVGPGPESLSVLIRTNEDVPSGPPRKVEV
EAVNSTSVKVSWRSPVPNKQHGQIRGYQVHYVRMENGEPKGQPMLKDVMLADAQWEFDDT
TEHDMIISGLQPETSYSLTVTAYTTKGDGARSKPKLVSTTGAVPGKPRLVINHTQMNTAL
IQWHPPVDTFGPLQGYRLKFGRKDMEPLTTLEFSEKEDHFTATDIHKGASYVFRLSARNK
VGFGEEMVKEISIPEEVPTGFPQNLHSEGTTSTSVQLSWQPPVLAERNGIITKYTLLYRD
INIPLLPMEQLIVPADTTMTLTGLKPDTTYDVKVRAHTSKGPGPYSPSVQFRTLPVDQVF
AKNFHVKAVMKTSVLLSWEIPENYNSAMPFKILYDDGKMVEEVDGRATQKLIVNLKPEKS
YSFVLTNRGNSAGGLQHRVTAKTAPDVLRTKPAFIGKTNLDGMITVQLPEVPANENIKGY
YIIIVPLKKSRGKFIKPWESPDEMELDELLKEISRKRRSIRYGREVELKPYIAAHFDVLP
TEFTLGDDKHYGGFTNKQLQSGQEYVFFVLAVMEHAESKMYATSPYSDPVVSMDLDPQPI
TDEEEGLIWVVGPVLAVVFIICIVIAILLYKRKRAESDSRKSSIPNNKEIPSHHPTDPVE
LRRLNFQTPGMASHPPIPILELADHIERLKANDNLKFSQEYESIDPGQQFTWEHSNLEVN
KPKNRYANVIAYDHSRVLLSAIEGIPGSDYVNANYIDGYRKQNAYIATQGSLPETFGDFW
RMIWEQRSATVVMMTKLEERSRVKCDQYWPSRGTETHGLVQVTLLDTVELATYCVRTFAL
YKNGSSEKREVRQFQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHCSAGVGRT
GCFIVIDAMLERIKHEKTVDIYGHVTLMRAQRNYMVQTEDQYIFIHDALLEAVTCGNTEV
PARNLYAYIQKLTQIETGENVTGMELEFKRLASSKAHTSRFISANLPCNKFKNRLVNIMP
YESTRVCLQPIRGVEGSDYINASFIDGYRQQKAYIATQGPLAETTEDFWRMLWEHNSTIV
VMLTKLREMGREKCHQYWPAERSARYQYFVVDPMAEYNMPQYILREFKVTDARDGQSRTV
RQFQFTDWPEQGVPKSGEGFIDFIGQVHKTKEQFGQDGPISVHCSAGVGRTGVFITLSIV
LERMRYEGVVDIFQTVKMLRTQRPAMVQTEDQYQFSYRAALEYLGSFDHYAT
Function
Can bidirectionally induce pre- and post-synaptic differentiation of neurons by mediating interaction with IL1RAP and IL1RAPL1 trans-synaptically. Involved in pre-synaptic differentiation through interaction with SLITRK2.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Reactome Pathway
Synaptic adhesion-like molecules (R-HSA-8849932 )
Receptor-type tyrosine-protein phosphatases (R-HSA-388844 )

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neuroblastoma DISVZBI4 Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Posttranslational Modification [2]
Atopic dermatitis DISTCP41 Strong Genetic Variation [3]
B-cell lymphoma DISIH1YQ Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Biomarker [6]
Chromosomal disorder DISM5BB5 Strong Altered Expression [7]
Clear cell renal carcinoma DISBXRFJ Strong Genetic Variation [8]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [9]
Endometrial cancer DISW0LMR Strong Biomarker [10]
Endometriosis DISX1AG8 Strong Biomarker [10]
Epilepsy DISBB28L Strong Genetic Variation [11]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [12]
Ewing sarcoma DISQYLV3 Strong Genetic Variation [13]
Gastric adenocarcinoma DISWWLTC Strong Biomarker [14]
Glioblastoma multiforme DISK8246 Strong Genetic Variation [15]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [16]
High blood pressure DISY2OHH Strong Biomarker [17]
Hyperinsulinemia DISIDWT6 Strong Genetic Variation [17]
Laryngeal squamous cell carcinoma DIS9UUVF Strong Posttranslational Modification [2]
Lung cancer DISCM4YA Strong Biomarker [18]
Lung carcinoma DISTR26C Strong Biomarker [18]
Major depressive disorder DIS4CL3X Strong Genetic Variation [19]
Mood disorder DISLVMWO Strong Genetic Variation [19]
Nephrotic syndrome DISSPSC2 Strong Genetic Variation [20]
Non-alcoholic fatty liver disease DISDG1NL Strong Genetic Variation [21]
Squamous cell carcinoma DISQVIFL Strong Biomarker [22]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [17]
Asthma DISW9QNS moderate Biomarker [23]
Attention deficit hyperactivity disorder DISL8MX9 moderate Biomarker [24]
Colon adenocarcinoma DISDRE0J moderate Genetic Variation [25]
Endometrial carcinoma DISXR5CY moderate Biomarker [10]
Narcolepsy DISLCNLI moderate Genetic Variation [26]
Colorectal neoplasm DISR1UCN Disputed Biomarker [9]
Melanoma DIS1RRCY Disputed Biomarker [25]
Non-small-cell lung cancer DIS5Y6R9 Disputed Genetic Variation [27]
Small-cell lung cancer DISK3LZD Disputed Genetic Variation [27]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [28]
Breast carcinoma DIS2UE88 Limited Genetic Variation [29]
Coronary heart disease DIS5OIP1 Limited Biomarker [30]
Cutaneous squamous cell carcinoma DIS3LXUG Limited Genetic Variation [31]
Gout DISHC0U7 Limited Genetic Variation [32]
MALT lymphoma DIS1AVVE Limited Altered Expression [33]
Neoplasm DISZKGEW Limited Posttranslational Modification [2]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [48]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [36]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [38]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [39]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [40]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [41]
Marinol DM70IK5 Approved Marinol increases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [42]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [43]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [44]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [45]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [46]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [47]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Receptor-type tyrosine-protein phosphatase delta (PTPRD). [49]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Aberrant splicing of the PTPRD gene mimics microdeletions identified at this locus in neuroblastomas.Genes Chromosomes Cancer. 2008 Mar;47(3):197-202. doi: 10.1002/gcc.20521.
2 Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma.Tumour Biol. 2017 Mar;39(3):1010428317691427. doi: 10.1177/1010428317691427.
3 The effect of autophagy-enhancing peptide in moisturizer on atopic dermatitis: a randomized controlled trial.J Dermatolog Treat. 2019 Sep;30(6):558-564. doi: 10.1080/09546634.2018.1544407. Epub 2018 Dec 2.
4 The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing.Leukemia. 2015 Mar;29(3):677-85. doi: 10.1038/leu.2014.264. Epub 2014 Sep 5.
5 Increased metastasis with loss of E2F2 in Myc-driven tumors.Oncotarget. 2015 Nov 10;6(35):38210-24. doi: 10.18632/oncotarget.5690.
6 Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis.PLoS Med. 2008 May 27;5(5):e114. doi: 10.1371/journal.pmed.0050114.
7 An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors.PLoS One. 2014 Jan 27;9(1):e82185. doi: 10.1371/journal.pone.0082185. eCollection 2014.
8 Polymorphism in protein tyrosine phosphatase receptor delta is associated with the risk of clear cell renal cell carcinoma.Gene. 2013 Jan 1;512(1):64-9. doi: 10.1016/j.gene.2012.09.094. Epub 2012 Oct 13.
9 Genomic and epigenomic integration identifies a prognostic signature in colon cancer.Clin Cancer Res. 2011 Mar 15;17(6):1535-45. doi: 10.1158/1078-0432.CCR-10-2509. Epub 2011 Jan 28.
10 Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses.Cancer Med. 2018 May;7(5):1978-1987. doi: 10.1002/cam4.1445. Epub 2018 Apr 2.
11 A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy.Hum Mol Genet. 2014 Jan 1;23(1):247-58. doi: 10.1093/hmg/ddt403. Epub 2013 Aug 19.
12 Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells.Gene. 2013 Jan 15;513(1):196-201. doi: 10.1016/j.gene.2012.09.091. Epub 2012 Sep 28.
13 Novel secondary somatic mutations in Ewing's sarcoma and desmoplastic small round cell tumors.PLoS One. 2014 Aug 13;9(8):e93676. doi: 10.1371/journal.pone.0093676. eCollection 2014.
14 Reduced expression of PTPRD correlates with poor prognosis in gastric adenocarcinoma.PLoS One. 2014 Nov 20;9(11):e113754. doi: 10.1371/journal.pone.0113754. eCollection 2014.
15 Germline mutations and new copy number variants among 40 pediatric cancer patients suspected for genetic predisposition.Clin Genet. 2019 Oct;96(4):359-365. doi: 10.1111/cge.13600. Epub 2019 Jul 15.
16 PTPRD is homozygously deleted and epigenetically downregulated in human hepatocellular carcinomas.OMICS. 2015 Apr;19(4):220-9. doi: 10.1089/omi.2015.0010.
17 Replication of genome-wide association signals of type 2 diabetes in Han Chinese in a prospective cohort.Clin Endocrinol (Oxf). 2012 Mar;76(3):365-72. doi: 10.1111/j.1365-2265.2011.04175.x.
18 A catalog of genes homozygously deleted in human lung cancer and the candidacy of PTPRD as a tumor suppressor gene.Genes Chromosomes Cancer. 2010 Apr;49(4):342-52. doi: 10.1002/gcc.20746.
19 Analysis of 23andMe antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in bupropion response.Transl Psychiatry. 2016 Sep 13;6(9):e889. doi: 10.1038/tp.2016.171.
20 Genetic Identification of Two Novel Loci Associated with Steroid-Sensitive Nephrotic Syndrome.J Am Soc Nephrol. 2019 Aug;30(8):1375-1384. doi: 10.1681/ASN.2018101054. Epub 2019 Jul 1.
21 GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network.BMC Med. 2019 Jul 17;17(1):135. doi: 10.1186/s12916-019-1364-z.
22 Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis.Genes Chromosomes Cancer. 2007 Jul;46(7):661-9. doi: 10.1002/gcc.20447.
23 Analyses of shared genetic factors between asthma and obesity in children.J Allergy Clin Immunol. 2010 Sep;126(3):631-7.e1-8. doi: 10.1016/j.jaci.2010.06.030.
24 Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes.Mol Psychiatry. 2010 Jun;15(6):637-46. doi: 10.1038/mp.2009.57. Epub 2009 Jun 23.
25 Mutational and functional analysis of the tumor-suppressor PTPRD in human melanoma.Hum Mutat. 2014 Nov;35(11):1301-10. doi: 10.1002/humu.22630. Epub 2014 Sep 10.
26 Genome-wide association studies of sleep disorders.Chest. 2011 Feb;139(2):446-452. doi: 10.1378/chest.10-1313.
27 Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis.Cancer Res. 2005 Jul 1;65(13):5561-70. doi: 10.1158/0008-5472.CAN-04-4603.
28 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
29 Association analysis identifies 65 new breast cancer risk loci.Nature. 2017 Nov 2;551(7678):92-94. doi: 10.1038/nature24284. Epub 2017 Oct 23.
30 Large scale association analysis identifies three susceptibility loci for coronary artery disease.PLoS One. 2011;6(12):e29427. doi: 10.1371/journal.pone.0029427. Epub 2011 Dec 27.
31 Metastatic cutaneous squamous cell carcinoma shows frequent deletion in the protein tyrosine phosphatase receptor Type D gene.Int J Cancer. 2012 Aug 1;131(3):E216-26. doi: 10.1002/ijc.27333. Epub 2011 Dec 21.
32 Gout and type 2 diabetes have a mutual inter-dependent effect on genetic risk factors and higher incidences.Rheumatology (Oxford). 2012 Apr;51(4):715-20. doi: 10.1093/rheumatology/ker373. Epub 2011 Dec 16.
33 The genetics of nodal marginal zone lymphoma.Blood. 2016 Sep 8;128(10):1362-73. doi: 10.1182/blood-2016-02-696757. Epub 2016 Jun 22.
34 Positive Association Between Type 2 Diabetes Risk Alleles Near CDKAL1 and Reduced Birthweight in Chinese Han Individuals.Chin Med J (Engl). 2015 Jul 20;128(14):1873-8. doi: 10.4103/0366-6999.160489.
35 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
36 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
40 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
41 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
42 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
43 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
44 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
45 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
46 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
47 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
48 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
49 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.