General Information of Disease (ID: DIS9UUVF)

Disease Name Laryngeal squamous cell carcinoma
Synonyms
LXSC; squamous cell carcinoma of the larynx; epidermoid carcinoma of larynx; epidermoid carcinoma of the larynx; larynx epidermoid carcinoma; larynx squamous cell carcinoma; squamous cell carcinoma of larynx; laryngeal epidermoid carcinoma; laryngeal squamous cell carcinoma; laryngeal throat squamous cell cancer
Definition
A squamous cell carcinoma that arises from the larynx. It is the most common histologic type of laryngeal carcinoma. It can arise from the glottis, supraglottic area, or it can be transglottic. Glottic squamous cell carcinoma is the most frequent laryngeal carcinoma in the United States. The symptoms, clinical behavior and the prognosis depend on the site of origin within the larynx.
Disease Hierarchy
DISQVIFL: Squamous cell carcinoma
DIS0UVDG: Squamous head and neck cell carcinom
DISNHCIV: Laryngeal carcinoma
DIS9UUVF: Laryngeal squamous cell carcinoma
Disease Identifiers
MONDO ID
MONDO_0005595
MESH ID
D000077195
UMLS CUI
C0280324
MedGen ID
83630
Orphanet ID
494550
SNOMED CT ID
405822008

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Cetuximab DMLNCE0 Approved Antibody [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 35 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
FADS2 TTT2VDU Limited Genetic Variation [2]
TNFRSF10B TTW20TU Limited SusceptibilityMutation [3]
ADAMTS4 TTYG6BU moderate Altered Expression [4]
ADAMTS5 TTXSU2Y moderate Biomarker [4]
ARRB1 TTMVD4A moderate Biomarker [5]
CDK8 TTBJR4L moderate Biomarker [6]
CTCFL TTY0RZT moderate Biomarker [7]
EPHA7 TTAHTVG moderate Biomarker [8]
ESRRG TT9ZRHB moderate Posttranslational Modification [9]
GMNN TT390KA moderate Altered Expression [10]
HOXB13 TTZ6I58 moderate Biomarker [11]
ITPR2 TTK9OV3 moderate Altered Expression [12]
LTA4H TTXZEAJ moderate Biomarker [13]
PDPK1 TTYMGWX moderate Altered Expression [14]
PLK2 TT976FS moderate Biomarker [15]
PLOD2 TT8MEUD moderate Biomarker [16]
PRLR TTBPXMA moderate Altered Expression [17]
SLC7A11 TTBZMIO moderate Altered Expression [18]
SSTR5 TT2BC4G moderate Posttranslational Modification [19]
ST8SIA4 TTDP8YM moderate Biomarker [20]
WWP1 TTBWMKT moderate Biomarker [21]
AURKA TTPS3C0 Strong Altered Expression [22]
BCL11A TTR61MW Strong Genetic Variation [23]
DIO1 TTU3X26 Strong Biomarker [24]
EPHB6 TTZEMUY Strong Biomarker [25]
EZR TTE47YC Strong Biomarker [26]
FSCN1 TTTRS9B Strong Altered Expression [27]
MMP10 TTXLEG7 Strong Biomarker [28]
MTNR1A TT0WAIE Strong Biomarker [29]
PRKDC TTK3PY9 Strong Altered Expression [30]
PTEN TTXJ3W7 Strong Altered Expression [31]
S100A8 TT4AF6N Strong Genetic Variation [32]
STC2 TT4EFTR Strong Biomarker [24]
TACSTD2 TTP2HE5 Strong Altered Expression [33]
WEE1 TTJFOAL Strong Biomarker [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC22A23 DTMJK12 moderate Genetic Variation [35]
SLC39A14 DTZ6IJW moderate Biomarker [36]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
FADS1 DE05S8C Strong Genetic Variation [37]
PARK7 DEPOVCH Strong Biomarker [38]
------------------------------------------------------------------------------------
This Disease Is Related to 86 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
CIB2 OT9ZJX1I Limited Biomarker [39]
ING1 OTEZBRKW Limited SomaticCausalMutation [40]
ACYP2 OTRB4S6X moderate Genetic Variation [41]
ADAMTS3 OT2U6VF5 moderate Altered Expression [4]
AIMP1 OTTA5C3U moderate Biomarker [13]
ALG3 OTPOL1QW moderate Biomarker [42]
ASPG OT5E2EKR moderate Biomarker [43]
BCL2L12 OTS6IFZY moderate Biomarker [44]
CAMSAP1 OT1N2182 moderate Biomarker [45]
CAVIN2 OTFHHDRU moderate Genetic Variation [46]
CCNA1 OTX4HD45 moderate Altered Expression [47]
CCNB2 OTIEXTDK moderate Biomarker [48]
CCNG2 OTII38K2 moderate Altered Expression [49]
CDK2AP1 OTNFOHDJ moderate Altered Expression [50]
CHAF1A OTXSSY4H moderate Altered Expression [51]
CHAF1B OTOMK4KH moderate Altered Expression [51]
CHD5 OTS5EVHH moderate Posttranslational Modification [52]
CKS2 OTPTMHIV moderate Biomarker [53]
CLDN11 OTNN6UTL moderate Posttranslational Modification [54]
CMTM3 OTS75IGC moderate Genetic Variation [55]
CNOT7 OTJBKCPI moderate Altered Expression [51]
CNOT8 OT6CMCS0 moderate Altered Expression [51]
CRKL OTOYSD1R moderate Biomarker [56]
DACH1 OTMKNAGG moderate Biomarker [57]
DCUN1D5 OTHPMYHX moderate Altered Expression [58]
DIAPH1 OTZBYPLH moderate Altered Expression [59]
DIAPH2 OTBEYFEZ moderate Genetic Variation [60]
DIAPH3 OTPOT23F moderate Biomarker [60]
ECT2 OTQDUCT6 moderate Biomarker [61]
FAM107A OTBG61YZ moderate Posttranslational Modification [62]
FOXJ1 OT7LLBZ7 moderate Biomarker [63]
GBX2 OTW0ZI4D moderate Biomarker [64]
INPPL1 OTCDAVBQ moderate Biomarker [65]
KLK11 OT5PKX7Y moderate Biomarker [66]
LOXL4 OT6XY2JL moderate Altered Expression [67]
LZTS2 OTQFSQEE moderate Posttranslational Modification [68]
MAF OT1GR3IZ moderate Altered Expression [12]
MAP2K4 OTZPZX11 moderate Altered Expression [69]
MCM4 OT19PNNG moderate Biomarker [70]
MDC1 OTEUQH4J moderate Biomarker [71]
MMP20 OT16S5S3 moderate Biomarker [72]
MMP25 OT3BG37V moderate Biomarker [72]
MMUT OTBBBV70 moderate Altered Expression [70]
MYO5A OTMWLP3E moderate Biomarker [73]
NABP1 OTFTNFHW moderate Genetic Variation [46]
PDCD5 OT6T2DDL moderate Altered Expression [74]
PLAGL2 OT6AP4V2 moderate Altered Expression [75]
PLXNB1 OTCA7JIT moderate Altered Expression [76]
PPP1R3A OTJL9VYP moderate Biomarker [28]
PRDX3 OTLB2WEU moderate Biomarker [77]
PTOV1 OT94WT5X moderate Biomarker [78]
RASSF2 OT2JHDO4 moderate Altered Expression [79]
SOX1 OTVI1RAR moderate Biomarker [80]
SPON2 OTE7JLNM moderate Biomarker [81]
TENM1 OTSKSU4V moderate Biomarker [82]
TP53BP2 OTOWJ2Y4 moderate Biomarker [83]
TRA2B OTZYQW52 moderate Altered Expression [84]
TRAPPC10 OTF6EAQX moderate Biomarker [36]
TSR2 OTSIWJQJ moderate Altered Expression [85]
ALG1 OTVXPA9E Strong Biomarker [29]
ANKRD36B OT3MW415 Strong Biomarker [86]
CADM1 OTRWG9QS Strong Biomarker [87]
CBY1 OTAKMUS2 Strong Posttranslational Modification [88]
DCUN1D1 OT8UJLZU Strong Biomarker [89]
DNLZ OT48CG1W Strong Biomarker [25]
ENTPD5 OTFH05B9 Strong Biomarker [90]
EOMES OTB9VQFA Strong Posttranslational Modification [91]
FGF3 OT9PK2SI Strong Altered Expression [92]
GALNT7 OTUJSCAO Strong Altered Expression [93]
HOXB9 OTMVHQOU Strong Biomarker [94]
INTS2 OT2N5TCK Strong Biomarker [95]
MT1B OTUA4FFH Strong Biomarker [29]
MT1E OTXJKU4Y Strong Biomarker [29]
MT1F OTZVUYG1 Strong Biomarker [29]
MT1G OTAV1OCR Strong Biomarker [29]
MT1H OT0MVBM6 Strong Biomarker [29]
MT1M OTVT8PLU Strong Biomarker [29]
MT1X OT9AKFVS Strong Biomarker [29]
MYCT1 OTZ8A9L3 Strong Biomarker [96]
PCDH17 OTRK0M05 Strong Altered Expression [97]
PDCD4 OTZ6NXUX Strong Biomarker [98]
PKD2 OTIXBU8H Strong Biomarker [99]
PRPF31 OTSJ0Z1Y Strong Biomarker [100]
PTPRD OTZPJ3GX Strong Posttranslational Modification [101]
SATB2 OT2W80XC Strong Biomarker [102]
SH3GL2 OTOE443G Strong Biomarker [103]
------------------------------------------------------------------------------------
⏷ Show the Full List of 86 DOT(s)

References

1 Cetuximab enhances oridonin-induced apoptosis through mitochondrial pathway and endoplasmic reticulum stress in laryngeal squamous cell carcinoma cells. Toxicol In Vitro. 2020 Sep;67:104885.
2 Genome-wide association study identifies three susceptibility loci for laryngeal squamous cell carcinoma in the Chinese population.Nat Genet. 2014 Oct;46(10):1110-4. doi: 10.1038/ng.3090. Epub 2014 Sep 7.
3 Causes of death in a cohort of 260 plutonium workers.Health Phys. 1998 Sep;75(3):236-40. doi: 10.1097/00004032-199809000-00001.
4 Expression and distribution of aggrecanases in human larynx: ADAMTS-5/aggrecanase-2 is the main aggrecanase in laryngeal carcinoma.Biochimie. 2013 Apr;95(4):725-34. doi: 10.1016/j.biochi.2012.10.022. Epub 2012 Nov 3.
5 -Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma.Int J Biol Markers. 2019 Mar;34(1):33-40. doi: 10.1177/1724600818813621. Epub 2019 Mar 10.
6 Aberrant expression of CDK8 regulates the malignant phenotype and associated with poor prognosis in human laryngeal squamous cell carcinoma.Eur Arch Otorhinolaryngol. 2017 May;274(5):2205-2213. doi: 10.1007/s00405-017-4484-0. Epub 2017 Feb 20.
7 Possible prognostic value of BORIS transcript variants ratio in laryngeal squamous cell carcinomas - a pilot study.Pathol Oncol Res. 2014 Jul;20(3):687-95. doi: 10.1007/s12253-014-9749-y. Epub 2014 Feb 23.
8 Effect of EphA7 Silencing on Proliferation, Invasion and Apoptosis in Human Laryngeal Cancer Cell Lines Hep-2 and AMC-HN-8.Cell Physiol Biochem. 2015;36(2):435-45. doi: 10.1159/000430110. Epub 2015 May 11.
9 ESRRG promoter hypermethylation as a diagnostic and prognostic biomarker in laryngeal squamous cell carcinoma.J Clin Lab Anal. 2019 Jul;33(6):e22899. doi: 10.1002/jcla.22899. Epub 2019 Apr 19.
10 Minichromosome maintenance protein 7 and geminin expression: Prognostic value in laryngeal squamous cell carcinoma in patients treated with radiotherapy and cetuximab.Head Neck. 2017 Apr;39(4):684-693. doi: 10.1002/hed.24670. Epub 2016 Dec 29.
11 HOXB9 Expression Correlates with Histological Grade and Prognosis in LSCC.Biomed Res Int. 2017;2017:3680305. doi: 10.1155/2017/3680305. Epub 2017 Jul 20.
12 Global miRNA Expression Profiling Identifies miR-1290 as Novel Potential oncomiR in Laryngeal Carcinoma.PLoS One. 2015 Dec 22;10(12):e0144924. doi: 10.1371/journal.pone.0144924. eCollection 2015.
13 Mass Spectrometric Analysis Identifies AIMP1 and LTA4H as FSCN1-Binding Proteins in Laryngeal Squamous Cell Carcinoma.Proteomics. 2019 Nov;19(21-22):e1900059. doi: 10.1002/pmic.201900059. Epub 2019 Jul 26.
14 MiR-613 suppressed the laryngeal squamous cell carcinoma progression through regulating PDK1.J Cell Biochem. 2018 Jul;119(7):5118-5125. doi: 10.1002/jcb.26468. Epub 2018 Apr 6.
15 MicroRNA-27a promotes proliferation and suppresses apoptosis by targeting PLK2 in laryngeal carcinoma.BMC Cancer. 2014 Sep 18;14:678. doi: 10.1186/1471-2407-14-678.
16 PLOD2 contributes to drug resistance in laryngeal cancer by promoting cancer stem cell-like characteristics.BMC Cancer. 2019 Aug 27;19(1):840. doi: 10.1186/s12885-019-6029-y.
17 Sex-related hormone receptor in laryngeal squamous cell carcinoma: correlation with androgen estrogen- and prolactin receptor expression and influence of prognosis.Acta Otolaryngol. 2018 Jan;138(1):66-72. doi: 10.1080/00016489.2017.1373851. Epub 2017 Sep 11.
18 SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma.Oncol Rep. 2017 Nov;38(5):3019-3029. doi: 10.3892/or.2017.5976. Epub 2017 Sep 20.
19 Aberrant methylation-mediated downregulation of lncRNA SSTR5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma.Epigenetics Chromatin. 2019 Jun 13;12(1):35. doi: 10.1186/s13072-019-0283-8.
20 Expression of polysialic acid in primary laryngeal squamous cell carcinoma.Life Sci. 2017 Mar 15;173:73-79. doi: 10.1016/j.lfs.2017.02.002. Epub 2017 Feb 7.
21 Small Nucleolar RNA Host Gene 12 (SNHG12) Promotes Proliferation and Invasion of Laryngeal Cancer Cells via Sponging miR-129-5p and Potentiating WW Domain-Containing E3 Ubiquitin Protein Ligase 1 (WWP1) Expression.Med Sci Monit. 2019 Jul 26;25:5552-5560. doi: 10.12659/MSM.917088.
22 Aurora kinase A induces chemotherapy resistance through revival of dormant cells in laryngeal squamous cell carcinoma.Head Neck. 2019 Jul;41(7):2239-2248. doi: 10.1002/hed.25689. Epub 2019 Feb 1.
23 Genetic polymorphisms and plasma levels of BCL11A contribute to the development of laryngeal squamous cell carcinoma.PLoS One. 2017 Feb 22;12(2):e0171116. doi: 10.1371/journal.pone.0171116. eCollection 2017.
24 Comprehensive analysis of differentially expressed profiles of lncRNAs, mRNAs, and miRNAs in laryngeal squamous cell carcinoma in order to construct a ceRNA network and identify potential biomarkers.J Cell Biochem. 2019 Oct;120(10):17963-17974. doi: 10.1002/jcb.29063. Epub 2019 May 24.
25 Sulindac induces apoptosis and inhibits tumor growth in vivo in head and neck squamous cell carcinoma. Neoplasia. 2007 Mar;9(3):192-9. doi: 10.1593/neo.06781.
26 Expression of ezrin and moesin related to invasion, metastasis and prognosis of laryngeal squamous cell carcinoma.Genet Mol Res. 2014 Sep 29;13(3):8002-13. doi: 10.4238/2014.September.29.13.
27 Promoter Methylation-Regulated miR-145-5p Inhibits Laryngeal Squamous Cell Carcinoma Progression by Targeting FSCN1.Mol Ther. 2019 Feb 6;27(2):365-379. doi: 10.1016/j.ymthe.2018.09.018. Epub 2018 Sep 27.
28 Integrated miRNA and mRNA expression analysis uncovers drug targets in laryngeal squamous cell carcinoma patients.Oral Oncol. 2019 Jun;93:76-84. doi: 10.1016/j.oraloncology.2019.04.018. Epub 2019 Apr 29.
29 Potential biomarkers for head and neck squamous cell carcinoma.Laryngoscope. 2003 Mar;113(3):393-400. doi: 10.1097/00005537-200303000-00001.
30 Expression of DNA-dependent protein kinase catalytic subunit in laryngeal squamous cell carcinoma and its importance.Exp Ther Med. 2018 Apr;15(4):3295-3301. doi: 10.3892/etm.2018.5826. Epub 2018 Feb 1.
31 Long noncoding RNA SOX2-OT facilitates laryngeal squamous cell carcinoma development by epigenetically inhibiting PTEN via methyltransferase EZH2.IUBMB Life. 2019 Sep;71(9):1230-1239. doi: 10.1002/iub.2026. Epub 2019 Feb 27.
32 UreA and cagA genes of Helicobacter pylori in Egyptian patients with laryngeal squamous cell carcinoma and benign laryngeal polyps: a cohort study.Eur Arch Otorhinolaryngol. 2016 Oct;273(10):3243-8. doi: 10.1007/s00405-016-4114-2. Epub 2016 May 25.
33 Trop2 inhibition suppresses the proliferation and invasion of laryngeal carcinoma cells via the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway.Mol Med Rep. 2015 Jul;12(1):865-70. doi: 10.3892/mmr.2015.3485. Epub 2015 Mar 13.
34 Inhibition of WEE1 Suppresses the Tumor Growth in Laryngeal Squamous Cell Carcinoma.Front Pharmacol. 2018 Sep 28;9:1041. doi: 10.3389/fphar.2018.01041. eCollection 2018.
35 Investigation of the SLC22A23 gene in laryngeal squamous cell carcinoma.BMC Cancer. 2018 Apr 27;18(1):477. doi: 10.1186/s12885-018-4381-y.
36 lncRNA TMEM51-AS1 and RUSC1-AS1 function as ceRNAs for induction of laryngeal squamous cell carcinoma and prediction of prognosis.PeerJ. 2019 Sep 10;7:e7456. doi: 10.7717/peerj.7456. eCollection 2019.
37 FADS1 rs174549 Polymorphism May Predict a Favorable Response to Chemoradiotherapy in Oral Cancer Patients.J Oral Maxillofac Surg. 2017 Jan;75(1):214-220. doi: 10.1016/j.joms.2016.07.005. Epub 2016 Jul 25.
38 DJ-1-induced phosphatase and tensin homologue downregulation is associated with proliferative and invasive activity of laryngeal cancer cells.Mol Med Rep. 2015 Aug;12(2):2003-8. doi: 10.3892/mmr.2015.3617. Epub 2015 Apr 15.
39 p57(kip2) expression is related to carcinogenesis and tumor progression in laryngeal tissues.Acta Otolaryngol. 2006 Mar;126(3):301-5. doi: 10.1080/00016480500388851.
40 Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas.Cancer Res. 2000 Jun 15;60(12):3143-6.
41 Assessment of the association between ACYP2 and laryngeal squamous cell carcinoma risk in Chinese males.Mol Genet Genomic Med. 2019 Jul;7(7):e00731. doi: 10.1002/mgg3.731. Epub 2019 May 29.
42 Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma.Mol Biol Rep. 2019 Jun;46(3):2693-2701. doi: 10.1007/s11033-019-04712-y. Epub 2019 Feb 25.
43 Deprivation of asparagine triggers cytoprotective autophagy in laryngeal squamous cell carcinoma.Appl Microbiol Biotechnol. 2017 Jun;101(12):4951-4961. doi: 10.1007/s00253-017-8221-9. Epub 2017 Mar 28.
44 Positive BCL2L12 expression predicts favorable prognosis in patients with laryngeal squamous cell carcinoma.Cancer Biomark. 2019;25(2):141-149. doi: 10.3233/CBM-181772.
45 MicroRNA-126 modulates the tumor microenvironment by targeting calmodulin-regulated spectrin-associated protein 1 (Camsap1).Int J Oncol. 2014 May;44(5):1678-84. doi: 10.3892/ijo.2014.2321. Epub 2014 Mar 5.
46 DIRC3 and near NABP1 genetic polymorphisms are associated laryngeal squamous cell carcinoma patient survival.Oncotarget. 2016 Nov 29;7(48):79596-79604. doi: 10.18632/oncotarget.12865.
47 Mutant p53 and cyclin A1 protein expression in primary laryngeal squamous cell carcinomas do not correlate to second primary tumours of the head and neck.ANZ J Surg. 2009 Jan-Feb;79(1-2):48-54. doi: 10.1111/j.1445-2197.2008.04799.x.
48 Recurrent CDK1 overexpression in laryngeal squamous cell carcinoma.Tumour Biol. 2016 Aug;37(8):11115-26. doi: 10.1007/s13277-016-4991-4. Epub 2016 Feb 24.
49 MicroRNA-93 regulates cyclin G2 expression and plays an oncogenic role in laryngeal squamous cell carcinoma.Int J Oncol. 2015 Jan;46(1):161-74. doi: 10.3892/ijo.2014.2704. Epub 2014 Oct 10.
50 miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression.Biol Res. 2015 Oct 29;48:60. doi: 10.1186/s40659-015-0052-5.
51 Overexpression of chromatin assembly factor-1/p60 predicts biological behaviour of laryngeal carcinomas.Acta Otorhinolaryngol Ital. 2017 Feb;37(1):17-24. doi: 10.14639/0392-100X-867.
52 The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma.Oral Oncol. 2011 Jul;47(7):601-8. doi: 10.1016/j.oraloncology.2011.05.003. Epub 2011 Jun 1.
53 MicroRNA-26a inhibits proliferation and tumorigenesis via targeting CKS2 in laryngeal squamous cell carcinoma.Clin Exp Pharmacol Physiol. 2018 May;45(5):444-451. doi: 10.1111/1440-1681.12890. Epub 2018 Jan 8.
54 The Clinical Signification of Claudin-11 Promoter Hypermethylation for Laryngeal Squamous Cell Carcinoma.Med Sci Monit. 2017 Jul 26;23:3635-3640. doi: 10.12659/msm.904751.
55 Elevated methylation of CMTM3 promoter in the male laryngeal squamous cell carcinoma patients.Clin Biochem. 2016 Nov;49(16-17):1278-1282. doi: 10.1016/j.clinbiochem.2016.08.002. Epub 2016 Aug 10.
56 Recurrent amplification in the 22q11 region in laryngeal squamous cell carcinoma results in overexpression of the CRKL but not the MAPK1 oncogene.Cancer Biomark. 2010-2011;8(1):11-9. doi: 10.3233/DMA-2011-0814.
57 Effect of DACH1 on proliferation and invasion of laryngeal squamous cell carcinoma.Head Face Med. 2018 Sep 27;14(1):20. doi: 10.1186/s13005-018-0177-1.
58 In vitro biological characterization of DCUN1D5 in DNA damage response.Asian Pac J Cancer Prev. 2012;13(8):4157-62. doi: 10.7314/apjcp.2012.13.8.4157.
59 DIAPH1 Is Upregulated and Inhibits Cell Apoptosis through ATR/p53/Caspase-3 Signaling Pathway in Laryngeal Squamous Cell Carcinoma.Dis Markers. 2019 Jan 14;2019:6716472. doi: 10.1155/2019/6716472. eCollection 2019.
60 DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma.Carcinogenesis. 2019 Oct 16;40(10):1251-1259. doi: 10.1093/carcin/bgz035.
61 Epithelial cell transforming sequence 2 expression is associated with the progression of laryngeal squamous cell carcinoma.Oncol Lett. 2019 Jun;17(6):5699-5704. doi: 10.3892/ol.2019.10226. Epub 2019 Apr 8.
62 Combined deletion and DNA methylation result in silencing of FAM107A gene in laryngeal tumors.Sci Rep. 2017 Jul 14;7(1):5386. doi: 10.1038/s41598-017-05857-1.
63 Knockdown of FOXJ1 inhibits the proliferation, migration, invasion, and glycolysis in laryngeal squamous cell carcinoma cells.J Cell Biochem. 2019 Sep;120(9):15874-15882. doi: 10.1002/jcb.28858. Epub 2019 May 6.
64 MicroRNA-4497 functions as a tumor suppressor in laryngeal squamous cell carcinoma via negatively modulation the GBX2.Auris Nasus Larynx. 2019 Feb;46(1):106-113. doi: 10.1016/j.anl.2018.05.005. Epub 2018 May 26.
65 Descending-SHIP2-mediated radiosensitivity enhancement through PI3K/Akt signaling pathway in laryngeal squamous cell carcinoma.Biomed Pharmacother. 2019 Oct;118:109392. doi: 10.1016/j.biopha.2019.109392. Epub 2019 Aug 29.
66 Low mRNA expression levels of kallikrein-related peptidase 4 (KLK4) predict short-term relapse in patients with laryngeal squamous cell carcinoma.Biol Chem. 2014 Sep;395(9):1051-62. doi: 10.1515/hsz-2014-0139.
67 Differential expression of LOXL4 in normal and tumour tissue samples of laryngeal squamous cell carcinoma.Clin Otolaryngol. 2016 Jun;41(3):206-10. doi: 10.1111/coa.12498. Epub 2016 Feb 4.
68 LZTS2 promoter hypermethylation: a potential biomarker for the diagnosis and prognosis of laryngeal squamous cell carcinoma.World J Surg Oncol. 2018 Mar 2;16(1):42. doi: 10.1186/s12957-018-1349-y.
69 Overexpression of mitogen-activated protein kinase kinase 4 and nuclear factor-kappaB in laryngeal squamous cell carcinoma: a potential indicator for poor prognosis.Oncol Rep. 2009 Jul;22(1):89-95.
70 Minichromosome maintenance (MCM) protein 4 overexpression is a potential prognostic marker for laryngeal squamous cell carcinoma.J BUON. 2017 Sep-Oct;22(5):1272-1277.
71 NFBD1/MDC1 participates in the regulation of proliferation and apoptosis in human laryngeal squamous cell carcinoma.Clin Transl Oncol. 2018 Apr;20(4):534-541. doi: 10.1007/s12094-017-1748-5. Epub 2017 Sep 18.
72 Prognostic significance of matrix metalloproteinase-20 overexpression in laryngeal squamous cell carcinoma.Acta Otolaryngol. 2011 Jul;131(7):769-73. doi: 10.3109/00016489.2011.560186. Epub 2011 Apr 5.
73 MYO5A inhibition by miR-145 acts as a predictive marker of occult neck lymph node metastasis in human laryngeal squamous cell carcinoma.Onco Targets Ther. 2018 Jun 21;11:3619-3635. doi: 10.2147/OTT.S164597. eCollection 2018.
74 Expression and clinical significance of the programmed cell death 5 gene and protein in laryngeal squamous cell carcinoma.J Int Med Res. 2013 Dec;41(6):1838-47. doi: 10.1177/0300060513498021.
75 Regulation of cell proliferation and migration in gallbladder cancer by zinc finger X-chromosomal protein.Gene. 2013 Oct 10;528(2):261-6. doi: 10.1016/j.gene.2013.06.064. Epub 2013 Jul 13.
76 Long noncoding RNA ZEB2-AS1 facilitates laryngeal squamous cell carcinoma progression by miR-6840-3p/PLXNB1 axis.Onco Targets Ther. 2019 Sep 6;12:7337-7345. doi: 10.2147/OTT.S212749. eCollection 2019.
77 Differential expression of peroxiredoxin 3 in laryngeal squamous cell carcinoma.Oncotarget. 2017 Jan 10;8(2):3471-3480. doi: 10.18632/oncotarget.13838.
78 Prostate tumor overexpressed-1, in conjunction with human papillomavirus status, predicts outcome in early-stage human laryngeal squamous cell carcinoma.Oncotarget. 2016 May 31;7(22):31878-91. doi: 10.18632/oncotarget.8103.
79 CircRASSF2 promotes laryngeal squamous cell carcinoma progression by regulating the miR-302b-3p/IGF-1R axis.Clin Sci (Lond). 2019 May 9;133(9):1053-1066. doi: 10.1042/CS20190110. Print 2019 May 15.
80 SOX 1, contrary to SOX 2, suppresses proliferation, migration, and invasion in human laryngeal squamous cell carcinoma by inhibiting the Wnt/-catenin pathway.Tumour Biol. 2015 Nov;36(11):8625-35. doi: 10.1007/s13277-015-3389-z. Epub 2015 Jun 4.
81 Spondin-2 is a novel diagnostic biomarker for laryngeal squamous cell carcinoma.Pathol Res Pract. 2019 Feb;215(2):286-291. doi: 10.1016/j.prp.2018.11.017. Epub 2018 Nov 29.
82 The Expression of MicroRNA-155 in Plasma and Tissue Is Matched in Human Laryngeal Squamous Cell Carcinoma.Yonsei Med J. 2016 Mar;57(2):298-305. doi: 10.3349/ymj.2016.57.2.298.
83 Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis.Medicine (Baltimore). 2018 Feb;97(7):e9738. doi: 10.1097/MD.0000000000009738.
84 Tra2 silencing suppresses cell proliferation in laryngeal squamous cell carcinoma via inhibiting PI3K/AKT signaling.Laryngoscope. 2019 Sep;129(9):E318-E328. doi: 10.1002/lary.27716. Epub 2018 Dec 31.
85 TSR2 Induces laryngeal cancer cell apoptosis through inhibiting NF-B signaling pathway.Laryngoscope. 2018 Apr;128(4):E130-E134. doi: 10.1002/lary.27035. Epub 2017 Dec 27.
86 MiR-143-3p suppresses cell proliferation, migration, and invasion by targeting Melanoma-Associated Antigen A9 in laryngeal squamous cell carcinoma.J Cell Biochem. 2019 Feb;120(2):1245-1257. doi: 10.1002/jcb.27084. Epub 2018 Oct 9.
87 miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma.Onco Targets Ther. 2019 Nov 29;12:10441-10453. doi: 10.2147/OTT.S224325. eCollection 2019.
88 Expression of CBY and methylation of CBY at promoter region in human laryngeal squamous cell carcinoma.Tumori. 2015 Mar-Apr;101(2):215-22. doi: 10.5301/tj.5000242. Epub 2015 Mar 20.
89 Expression of DCUN1D1 in laryngeal squamous cell carcinoma and its inhibiting effect on TU-177 cells after interfered by RNA.Clin Exp Pharmacol Physiol. 2018 May;45(5):461-466. doi: 10.1111/1440-1681.12893. Epub 2017 Dec 21.
90 Gradual deregulation and loss of PCPH expression in the progression of human laryngeal neoplasia.Mol Carcinog. 2002 Dec;35(4):186-95. doi: 10.1002/mc.10091.
91 High frequency of TGF-beta-receptor-II mutations in microdissected tissue samples from laryngeal squamous cell carcinomas.Lab Invest. 2003 Aug;83(8):1241-51. doi: 10.1097/01.lab.0000081389.98880.79.
92 Clinical significance of Cyclin D1, FGF3 and p21 protein expression in laryngeal squamous cell carcinoma.J BUON. 2014 Oct-Dec;19(4):944-52.
93 MiR-154 inhibits the growth of laryngeal squamous cell carcinoma by targeting GALNT7.Biochem Cell Biol. 2018 Dec;96(6):752-760. doi: 10.1139/bcb-2018-0047. Epub 2018 Jun 6.
94 Aberrant expressed long non-coding RNAs in laryngeal squamous-cell carcinoma.Am J Otolaryngol. 2019 Sep-Oct;40(5):615-625. doi: 10.1016/j.amjoto.2019.05.002. Epub 2019 May 9.
95 Amplification of int-2 and bcl-1 genes in squamous cell carcinoma of the larynx.Acta Otolaryngol. 1998 Sep;118(5):763-8. doi: 10.1080/00016489850183331.
96 Overexpression of MYCT1 Inhibits Proliferation and Induces Apoptosis in Human Acute Myeloid Leukemia HL-60 and KG-1a Cells in vitro and in vivo.Front Pharmacol. 2018 Sep 18;9:1045. doi: 10.3389/fphar.2018.01045. eCollection 2018.
97 MiR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17.Auris Nasus Larynx. 2019 Aug;46(4):583-592. doi: 10.1016/j.anl.2018.10.020. Epub 2018 Nov 16.
98 Defining the regulatory role of programmed cell death 4 in laryngeal squamous cell carcinoma.Biochem Cell Biol. 2018 Oct;96(5):522-538. doi: 10.1139/bcb-2017-0293. Epub 2018 Mar 6.
99 Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells.Oncol Lett. 2019 Feb;17(2):1953-1961. doi: 10.3892/ol.2018.9752. Epub 2018 Nov 23.
100 Functional significance of the long non-coding RNA RP11-169D4.1 as a metastasis suppressor in laryngeal squamous cell carcinoma by regulating CDH1.Oncol Rep. 2017 Jul;38(1):211-220. doi: 10.3892/or.2017.5645. Epub 2017 May 16.
101 Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma.Tumour Biol. 2017 Mar;39(3):1010428317691427. doi: 10.1177/1010428317691427.
102 SATB1 and SATB2 play opposing roles in c-Myc expression and progression of colorectal cancer.Oncotarget. 2016 Jan 26;7(4):4993-5006. doi: 10.18632/oncotarget.6651.
103 SH3GL2 gene participates in MEK-ERK signal pathway partly by regulating EGFR in the laryngeal carcinoma cell line Hep2.Med Sci Monit. 2010 Jun;16(6):BR168-73.