General Information of Drug Off-Target (DOT) (ID: OT2TER5M)

DOT Name GTP-binding nuclear protein Ran (RAN)
Synonyms EC 3.6.5.-; Androgen receptor-associated protein 24; GTPase Ran; Ras-like protein TC4; Ras-related nuclear protein
Gene Name RAN
Related Disease
Carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Glaucoma/ocular hypertension ( )
Liver cancer ( )
OPTN-related open angle glaucoma ( )
Advanced cancer ( )
Alzheimer disease ( )
Amyotrophic lateral sclerosis ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiac arrest ( )
Cervical Intraepithelial neoplasia ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Epilepsy ( )
Esophageal squamous cell carcinoma ( )
Familial adenomatous polyposis ( )
Frontotemporal dementia ( )
HIV infectious disease ( )
Huntington disease ( )
Irritable bowel syndrome ( )
Keloid ( )
Laryngeal carcinoma ( )
Myotonic dystrophy ( )
Neoplasm ( )
Neuroblastoma ( )
Osteoporosis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Rectal carcinoma ( )
Renal cell carcinoma ( )
Sciatic neuropathy ( )
Type-1/2 diabetes ( )
Fragile X-associated tremor/ataxia syndrome ( )
Lung cancer ( )
Lung carcinoma ( )
Pick disease ( )
Undifferentiated carcinoma ( )
Adult glioblastoma ( )
Glioblastoma multiforme ( )
Mesothelioma ( )
Nasopharyngeal carcinoma ( )
Osteoarthritis ( )
Parkinson disease ( )
Plasma cell myeloma ( )
Venous thromboembolism ( )
UniProt ID
RAN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1I2M ; 1IBR ; 1K5D ; 1K5G ; 1QBK ; 1RRP ; 2MMC ; 2MMG ; 2N1B ; 3CH5 ; 3EA5 ; 3GJ0 ; 3GJ3 ; 3GJ4 ; 3GJ5 ; 3GJ6 ; 3GJ7 ; 3GJ8 ; 3GJX ; 3NBY ; 3NBZ ; 3NC0 ; 3NC1 ; 3ZJY ; 4C0Q ; 4GMX ; 4GPT ; 4HAT ; 4HAU ; 4HAV ; 4HAW ; 4HAX ; 4HAY ; 4HAZ ; 4HB0 ; 4HB2 ; 4HB3 ; 4HB4 ; 4OL0 ; 4WVF ; 5CIQ ; 5CIT ; 5CIW ; 5CJ2 ; 5CLL ; 5CLQ ; 5DH9 ; 5DHA ; 5DHF ; 5DI9 ; 5DIF ; 5DIS ; 5DLQ ; 5FYQ ; 5JLJ ; 5UWH ; 5UWI ; 5UWJ ; 5UWO ; 5UWP ; 5UWQ ; 5UWR ; 5UWS ; 5UWT ; 5UWU ; 5UWW ; 5YRO ; 5YST ; 5YSU ; 5YTB ; 5ZPU ; 6A38 ; 6A3A ; 6A3B ; 6A3C ; 6A3E ; 6CIT ; 6KFT ; 6LQ9 ; 6M60 ; 6M6X ; 6Q82 ; 6Q84 ; 6TVO ; 6X2M ; 6X2O ; 6X2P ; 6X2R ; 6X2S ; 6X2U ; 6X2V ; 6X2W ; 6X2X ; 6X2Y ; 6XJP ; 6XJR ; 6XJS ; 6XJT ; 6XJU ; 7B51 ; 7CND ; 7DBG ; 7L5E ; 7MNP ; 7MNQ ; 7MNR ; 7MNS ; 7MNT ; 7MNU ; 7MNV ; 7MNW ; 7MNX ; 7MNY ; 7MNZ ; 7MO0 ; 7MO1 ; 7MO2 ; 7MO3 ; 7MO4 ; 7MO5 ; 7YPZ ; 8HQ3 ; 8HQ6 ; 8UX1
EC Number
3.6.5.-
Pfam ID
PF00071
Sequence
MAAQGEPQVQFKLVLVGDGGTGKTTFVKRHLTGEFEKKYVATLGVEVHPLVFHTNRGPIK
FNVWDTAGQEKFGGLRDGYYIQAQCAIIMFDVTSRVTYKNVPNWHRDLVRVCENIPIVLC
GNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEKPFLWLARKLIGDPNLEFVAMP
ALAPPEVVMDPALAAQYEHDLEVAQTTALPDEDDDL
Function
GTPase involved in nucleocytoplasmic transport, participating both to the import and the export from the nucleus of proteins and RNAs. Switches between a cytoplasmic GDP- and a nuclear GTP-bound state by nucleotide exchange and GTP hydrolysis. Nuclear import receptors such as importin beta bind their substrates only in the absence of GTP-bound RAN and release them upon direct interaction with GTP-bound RAN, while export receptors behave in the opposite way. Thereby, RAN controls cargo loading and release by transport receptors in the proper compartment and ensures the directionality of the transport. Interaction with RANBP1 induces a conformation change in the complex formed by XPO1 and RAN that triggers the release of the nuclear export signal of cargo proteins. RAN (GTP-bound form) triggers microtubule assembly at mitotic chromosomes and is required for normal mitotic spindle assembly and chromosome segregation. Required for normal progress through mitosis. The complex with BIRC5/survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2. Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.
Tissue Specificity Expressed in a variety of tissues.
KEGG Pathway
Ribosome biogenesis in eukaryotes (hsa03008 )
Nucleocytoplasmic transport (hsa03013 )
Viral life cycle - HIV-1 (hsa03250 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Reactome Pathway
Regulation of cholesterol biosynthesis by SREBP (SREBF) (R-HSA-1655829 )
NEP/NS2 Interacts with the Cellular Export Machinery (R-HSA-168333 )
Nuclear import of Rev protein (R-HSA-180746 )
MicroRNA (miRNA) biogenesis (R-HSA-203927 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
tRNA processing in the nucleus (R-HSA-6784531 )
Postmitotic nuclear pore complex (NPC) reformation (R-HSA-9615933 )
Rev-mediated nuclear export of HIV RNA (R-HSA-165054 )

Molecular Interaction Atlas (MIA) of This DOT

47 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Definitive Biomarker [1]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Definitive Altered Expression [2]
Glaucoma/ocular hypertension DISLBXBY Definitive Genetic Variation [3]
Liver cancer DISDE4BI Definitive Altered Expression [2]
OPTN-related open angle glaucoma DISDR98A Definitive Genetic Variation [3]
Advanced cancer DISAT1Z9 Strong Altered Expression [4]
Alzheimer disease DISF8S70 Strong Altered Expression [5]
Amyotrophic lateral sclerosis DISF7HVM Strong Biomarker [6]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Cardiac arrest DIS9DIA4 Strong Biomarker [8]
Cervical Intraepithelial neoplasia DISXP757 Strong Altered Expression [9]
Colon cancer DISVC52G Strong Genetic Variation [10]
Colon carcinoma DISJYKUO Strong Genetic Variation [10]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [10]
Epilepsy DISBB28L Strong Genetic Variation [11]
Esophageal squamous cell carcinoma DIS5N2GV Strong Genetic Variation [12]
Familial adenomatous polyposis DISW53RE Strong Altered Expression [13]
Frontotemporal dementia DISKYHXL Strong Biomarker [6]
HIV infectious disease DISO97HC Strong Biomarker [14]
Huntington disease DISQPLA4 Strong Biomarker [15]
Irritable bowel syndrome DIS27206 Strong Biomarker [16]
Keloid DISV09JY Strong Biomarker [17]
Laryngeal carcinoma DISNHCIV Strong Genetic Variation [18]
Myotonic dystrophy DISNBEMX Strong Biomarker [19]
Neoplasm DISZKGEW Strong Biomarker [20]
Neuroblastoma DISVZBI4 Strong Biomarker [21]
Osteoporosis DISF2JE0 Strong Biomarker [22]
Prostate cancer DISF190Y Strong Genetic Variation [23]
Prostate carcinoma DISMJPLE Strong Genetic Variation [23]
Rectal carcinoma DIS8FRR7 Strong Genetic Variation [10]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [24]
Sciatic neuropathy DISMGDKX Strong Biomarker [25]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [10]
Fragile X-associated tremor/ataxia syndrome DISKB25R moderate Biomarker [26]
Lung cancer DISCM4YA moderate Altered Expression [4]
Lung carcinoma DISTR26C moderate Altered Expression [4]
Pick disease DISP6X50 moderate Biomarker [6]
Undifferentiated carcinoma DISIAZST Disputed Biomarker [1]
Adult glioblastoma DISVP4LU Limited Biomarker [27]
Glioblastoma multiforme DISK8246 Limited Biomarker [27]
Mesothelioma DISKWK9M Limited Biomarker [28]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [29]
Osteoarthritis DIS05URM Limited Biomarker [30]
Parkinson disease DISQVHKL Limited Genetic Variation [31]
Plasma cell myeloma DIS0DFZ0 Limited Biomarker [32]
Venous thromboembolism DISUR7CR Limited Biomarker [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of GTP-binding nuclear protein Ran (RAN). [34]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of GTP-binding nuclear protein Ran (RAN). [35]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of GTP-binding nuclear protein Ran (RAN). [36]
Estradiol DMUNTE3 Approved Estradiol affects the expression of GTP-binding nuclear protein Ran (RAN). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of GTP-binding nuclear protein Ran (RAN). [38]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of GTP-binding nuclear protein Ran (RAN). [39]
Progesterone DMUY35B Approved Progesterone decreases the expression of GTP-binding nuclear protein Ran (RAN). [40]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of GTP-binding nuclear protein Ran (RAN). [41]
Clozapine DMFC71L Approved Clozapine decreases the expression of GTP-binding nuclear protein Ran (RAN). [42]
Ibuprofen DM8VCBE Approved Ibuprofen affects the expression of GTP-binding nuclear protein Ran (RAN). [43]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of GTP-binding nuclear protein Ran (RAN). [44]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of GTP-binding nuclear protein Ran (RAN). [45]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of GTP-binding nuclear protein Ran (RAN). [46]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of GTP-binding nuclear protein Ran (RAN). [48]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of GTP-binding nuclear protein Ran (RAN). [45]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of GTP-binding nuclear protein Ran (RAN). [50]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of GTP-binding nuclear protein Ran (RAN). [46]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of GTP-binding nuclear protein Ran (RAN). [51]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID decreases the expression of GTP-binding nuclear protein Ran (RAN). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of GTP-binding nuclear protein Ran (RAN). [47]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of GTP-binding nuclear protein Ran (RAN). [49]
------------------------------------------------------------------------------------

References

1 Global gene expression profiling of chemically induced rat mammary gland carcinomas and adenomas.Toxicol Pathol. 2005;33(7):768-75. doi: 10.1080/01926230500437027.
2 RETRACTED: HBV-encoded miR-2 functions as an oncogene by downregulating TRIM35 but upregulating RAN in liver cancer cells.EBioMedicine. 2019 Oct;48:117-129. doi: 10.1016/j.ebiom.2019.09.012. Epub 2019 Sep 14.
3 Analysis of the polymorphic variants of RAN and GEMIN3 genes and risk of Primary Open-Angle Glaucoma in the Polish population.Ophthalmic Genet. 2018 Apr;39(2):180-188. doi: 10.1080/13816810.2017.1381978. Epub 2017 Nov 2.
4 RanGTPase: a candidate for Myc-mediated cancer progression.J Natl Cancer Inst. 2013 Apr 3;105(7):475-88. doi: 10.1093/jnci/djt028. Epub 2013 Mar 6.
5 Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer's disease pathophysiology.PLoS One. 2013;8(1):e53349. doi: 10.1371/journal.pone.0053349. Epub 2013 Jan 8.
6 RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats.Nat Neurosci. 2019 Sep;22(9):1383-1388. doi: 10.1038/s41593-019-0455-7. Epub 2019 Jul 29.
7 Anti-Invasive and Anti-Proliferative Effects of shRNA-Loaded Poly(Lactide-Co-Glycolide) Nanoparticles Following RAN Silencing in MDA-MB231 Breast Cancer Cells.Pharm Res. 2018 Dec 17;36(2):26. doi: 10.1007/s11095-018-2555-6.
8 Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen.Cancer Res. 2007 May 1;67(9):4390-8. doi: 10.1158/0008-5472.CAN-06-4132.
9 Identification of chromosomal alterations important in the development of cervical intraepithelial neoplasia and invasive carcinoma using alignment of DNA microarray data.Gynecol Oncol. 2006 Nov;103(2):458-62. doi: 10.1016/j.ygyno.2006.03.020. Epub 2006 May 2.
10 3'-UTR Polymorphisms in the MiRNA Machinery Genes DROSHA, DICER1, RAN, and XPO5 Are Associated with Colorectal Cancer Risk in a Korean Population.PLoS One. 2015 Jul 6;10(7):e0131125. doi: 10.1371/journal.pone.0131125. eCollection 2015.
11 IL-1-31/IL1-RA genetic markers association with idiopathic generalized epilepsy and treatment response in a cohort of Egyptian population.Int J Neurosci. 2020 Apr;130(4):348-354. doi: 10.1080/00207454.2019.1688809. Epub 2019 Nov 7.
12 Genetic polymorphisms of microRNA machinery genes predict overall survival of esophageal squamous carcinoma.J Clin Lab Anal. 2018 Jan;32(1):e22170. doi: 10.1002/jcla.22170. Epub 2017 Dec 11.
13 The coiled coil region (amino acids 129-250) of the tumor suppressor protein adenomatous polyposis coli (APC). Its structure and its interaction with chromosome maintenance region 1 (Crm-1).J Biol Chem. 2002 Aug 30;277(35):32332-8. doi: 10.1074/jbc.M203990200. Epub 2002 Jun 17.
14 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
15 RAN Translation in Huntington Disease.Neuron. 2015 Nov 18;88(4):667-77. doi: 10.1016/j.neuron.2015.10.038.
16 Gastrointestinal Adverse Events of Cannabinoid 1 Receptor Inverse Agonists suggest their Potential Use in Irritable Bowel Syndrome with Constipation: A Systematic Review and Meta-Analysis.J Gastrointestin Liver Dis. 2019 Dec 9;28(4):473-481. doi: 10.15403/jgld-265.
17 Comparative proteomic analysis between normal skin and keloid scar.Br J Dermatol. 2010 Jun;162(6):1302-15. doi: 10.1111/j.1365-2133.2010.09660.x. Epub 2010 Feb 1.
18 Association of Polymorphic Variants of miRNA Processing Genes with Larynx Cancer Risk in a Polish Population.Biomed Res Int. 2015;2015:298378. doi: 10.1155/2015/298378. Epub 2015 Nov 25.
19 Repeat-Associated Non-ATG Translation in Neurological Diseases.Cold Spring Harb Perspect Biol. 2018 Dec 3;10(12):a033019. doi: 10.1101/cshperspect.a033019.
20 Hypoxia-mediated miR-212-3p downregulation enhances progression of intrahepatic cholangiocarcinoma through upregulation of Rab1a.Cancer Biol Ther. 2018;19(11):984-993. doi: 10.1080/15384047.2018.1456608. Epub 2018 May 14.
21 RAN/RANBP2 polymorphisms and neuroblastoma risk in Chinese children: a three-center case-control study.Aging (Albany NY). 2018 Apr 28;10(4):808-818. doi: 10.18632/aging.101429.
22 Strontium and strontium ranelate: Historical review of some of their functions.Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:1222-1230. doi: 10.1016/j.msec.2017.05.042. Epub 2017 May 9.
23 Association of genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) with familial prostate cancer risk in a Japanese population.Anticancer Res. 2003 May-Jun;23(3C):2897-902.
24 High expression of Ran GTPase is associated with local invasion and metastasis of human clear cell renal cell carcinoma.Int J Cancer. 2008 May 15;122(10):2391-7. doi: 10.1002/ijc.23400.
25 Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve.Neuron. 2008 Jul 31;59(2):241-52. doi: 10.1016/j.neuron.2008.05.029.
26 Astroglial-targeted expression of the fragile X CGG repeat premutation in mice yields RAN translation, motor deficits and possible evidence for cell-to-cell propagation of FXTAS pathology.Acta Neuropathol Commun. 2019 Feb 26;7(1):27. doi: 10.1186/s40478-019-0677-7.
27 Functional Blockade of Small GTPase RAN Inhibits Glioblastoma Cell Viability.Front Oncol. 2019 Jan 8;8:662. doi: 10.3389/fonc.2018.00662. eCollection 2018.
28 Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets.Lung Cancer. 2010 Jan;67(1):57-68. doi: 10.1016/j.lungcan.2009.03.016.
29 Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS.Oncotarget. 2016 Jun 7;7(23):34022-37. doi: 10.18632/oncotarget.9067.
30 Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance.Mol Cell Proteomics. 2009 Jan;8(1):172-89. doi: 10.1074/mcp.M800292-MCP200. Epub 2008 Sep 9.
31 An association analysis of the rs1572931 polymorphism of the RAB7L1 gene in Parkinson's disease, amyotrophic lateral sclerosis and multiple system atrophy in China.Eur J Neurol. 2014 Oct;21(10):1337-43. doi: 10.1111/ene.12490. Epub 2014 Jul 12.
32 Expression of RAN, ZHX-2, and CHC1L genes in multiple myeloma patients and in myeloma cell lines treated with HDAC and Dnmts inhibitors.Neoplasma. 2010;57(5):482-7. doi: 10.4149/neo_2010_05_482.
33 Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans.Int J Mol Sci. 2019 Aug 1;20(15):3771. doi: 10.3390/ijms20153771.
34 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
35 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
36 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
37 Gene alterations of ovarian cancer cells expressing estrogen receptors by estrogen and bisphenol a using microarray analysis. Lab Anim Res. 2011 Jun;27(2):99-107. doi: 10.5625/lar.2011.27.2.99. Epub 2011 Jun 22.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
40 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
41 Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to anti-tumour effects of tumour necrosis factor-alpha, CH11 and CYC202. Endocr Relat Cancer. 2007 Jun;14(2):305-15. doi: 10.1677/ERC-06-0003.
42 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
43 Protein profile in neuroblastoma cells incubated with S- and R-enantiomers of ibuprofen by iTRAQ-coupled 2-D LC-MS/MS analysis: possible action of induced proteins on Alzheimer's disease. Proteomics. 2008 Apr;8(8):1595-607. doi: 10.1002/pmic.200700556.
44 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.
45 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
46 Gene expression-signature of belinostat in cell lines is specific for histone deacetylase inhibitor treatment, with a corresponding signature in xenografts. Anticancer Drugs. 2009 Sep;20(8):682-92.
47 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
48 Selective inhibition of BET bromodomains. Nature. 2010 Dec 23;468(7327):1067-73.
49 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
50 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
51 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.