General Information of Drug Off-Target (DOT) (ID: OTB06ESI)

DOT Name Long-chain-fatty-acid--CoA ligase 1 (ACSL1)
Synonyms
EC 6.2.1.3; Acyl-CoA synthetase 1; ACS1; Arachidonate--CoA ligase; EC 6.2.1.15; Long-chain acyl-CoA synthetase 1; LACS 1; Long-chain acyl-CoA synthetase 2; LACS 2; Long-chain fatty acid-CoA ligase 2; Palmitoyl-CoA ligase 1; Palmitoyl-CoA ligase 2; Phytanate--CoA ligase; EC 6.2.1.24
Gene Name ACSL1
Related Disease
Carcinoma ( )
Acute myocardial infarction ( )
Cervical Intraepithelial neoplasia ( )
Colon cancer ( )
Colon carcinoma ( )
Glioma ( )
Glucose metabolism disease ( )
Hepatocellular carcinoma ( )
Inflammatory bowel disease ( )
Neoplasm ( )
Nephropathy ( )
Non-alcoholic fatty liver disease ( )
Obesity ( )
Type-1/2 diabetes ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Undifferentiated carcinoma ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Diabetic neuropathy ( )
Liver cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Non-insulin dependent diabetes ( )
Type-1 diabetes ( )
Vascular disease ( )
UniProt ID
ACSL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
6.2.1.15; 6.2.1.24; 6.2.1.3
Pfam ID
PF00501
Sequence
MQAHELFRYFRMPELVDFRQYVRTLPTNTLMGFGAFAALTTFWYATRPKPLKPPCDLSMQ
SVEVAGSGGARRSALLDSDEPLVYFYDDVTTLYEGFQRGIQVSNNGPCLGSRKPDQPYEW
LSYKQVAELSECIGSALIQKGFKTAPDQFIGIFAQNRPEWVIIEQGCFAYSMVIVPLYDT
LGNEAITYIVNKAELSLVFVDKPEKAKLLLEGVENKLIPGLKIIVVMDAYGSELVERGQR
CGVEVTSMKAMEDLGRANRRKPKPPAPEDLAVICFTSGTTGNPKGAMVTHRNIVSDCSAF
VKATENTVNPCPDDTLISFLPLAHMFERVVECVMLCHGAKIGFFQGDIRLLMDDLKVLQP
TVFPVVPRLLNRMFDRIFGQANTTLKRWLLDFASKRKEAELRSGIIRNNSLWDRLIFHKV
QSSLGGRVRLMVTGAAPVSATVLTFLRAALGCQFYEGYGQTECTAGCCLTMPGDWTAGHV
GAPMPCNLIKLVDVEEMNYMAAEGEGEVCVKGPNVFQGYLKDPAKTAEALDKDGWLHTGD
IGKWLPNGTLKIIDRKKHIFKLAQGEYIAPEKIENIYMRSEPVAQVFVHGESLQAFLIAI
VVPDVETLCSWAQKRGFEGSFEELCRNKDVKKAILEDMVRLGKDSGLKPFEQVKGITLHP
ELFSIDNGLLTPTMKAKRPELRNYFRSQIDDLYSTIKV
Function
Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate. Preferentially activates arachidonate than epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs).
Tissue Specificity Highly expressed in liver, heart, skeletal muscle, kidney and erythroid cells, and to a lesser extent in brain, lung, placenta and pancreas.
KEGG Pathway
Fatty acid biosynthesis (hsa00061 )
Fatty acid degradation (hsa00071 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
PPAR sig.ling pathway (hsa03320 )
Peroxisome (hsa04146 )
Ferroptosis (hsa04216 )
Thermogenesis (hsa04714 )
Adipocytokine sig.ling pathway (hsa04920 )
Reactome Pathway
Linoleic acid (LA) metabolism (R-HSA-2046105 )
alpha-linolenic acid (ALA) metabolism (R-HSA-2046106 )
Synthesis of very long-chain fatty acyl-CoAs (R-HSA-75876 )
PPARA activates gene expression (R-HSA-1989781 )
BioCyc Pathway
MetaCyc:HS07766-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Definitive Biomarker [1]
Acute myocardial infarction DISE3HTG Strong Altered Expression [2]
Cervical Intraepithelial neoplasia DISXP757 Strong Genetic Variation [3]
Colon cancer DISVC52G Strong Genetic Variation [4]
Colon carcinoma DISJYKUO Strong Genetic Variation [4]
Glioma DIS5RPEH Strong Biomarker [5]
Glucose metabolism disease DIS5IK09 Strong Biomarker [6]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [7]
Inflammatory bowel disease DISGN23E Strong Altered Expression [8]
Neoplasm DISZKGEW Strong Biomarker [9]
Nephropathy DISXWP4P Strong Altered Expression [10]
Non-alcoholic fatty liver disease DISDG1NL Strong Altered Expression [11]
Obesity DIS47Y1K Strong Altered Expression [12]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [13]
Clear cell renal carcinoma DISBXRFJ moderate Altered Expression [9]
Colorectal carcinoma DIS5PYL0 moderate Biomarker [14]
Undifferentiated carcinoma DISIAZST Disputed Biomarker [1]
Arteriosclerosis DISK5QGC Limited Altered Expression [2]
Atherosclerosis DISMN9J3 Limited Altered Expression [2]
Breast cancer DIS7DPX1 Limited Biomarker [15]
Breast carcinoma DIS2UE88 Limited Biomarker [15]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Limited Biomarker [16]
Diabetic neuropathy DISX6VF8 Limited Altered Expression [17]
Liver cancer DISDE4BI Limited Biomarker [16]
Lung cancer DISCM4YA Limited Altered Expression [18]
Lung carcinoma DISTR26C Limited Altered Expression [18]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [19]
Type-1 diabetes DIS7HLUB Limited Biomarker [20]
Vascular disease DISVS67S Limited Biomarker [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitomycin DMH0ZJE Approved Long-chain-fatty-acid--CoA ligase 1 (ACSL1) affects the response to substance of Mitomycin. [51]
------------------------------------------------------------------------------------
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [21]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [22]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [23]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [24]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [25]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [26]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [28]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [29]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [30]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [31]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [32]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [33]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Progesterone DMUY35B Approved Progesterone increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [34]
Menadione DMSJDTY Approved Menadione affects the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [31]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [35]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [37]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [38]
Nicotine DMWX5CO Approved Nicotine increases the splicing of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [39]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [40]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [41]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [27]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [42]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [43]
Bezafibrate DMZDCS0 Approved Bezafibrate increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [44]
Tolcapone DM8MNVO Approved Tolcapone decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [45]
Promegestone DMK4S8I Approved Promegestone increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [46]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [35]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [48]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [49]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [50]
Linalool DMGZQ5P Investigative Linalool increases the expression of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [36]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Long-chain-fatty-acid--CoA ligase 1 (ACSL1). [47]
------------------------------------------------------------------------------------

References

1 Global gene expression profiling of chemically induced rat mammary gland carcinomas and adenomas.Toxicol Pathol. 2005;33(7):768-75. doi: 10.1080/01926230500437027.
2 High expression of long chain acyl-coenzyme A synthetase 1 in peripheral blood may be a molecular marker for assessing the risk of acute myocardial infarction.Exp Ther Med. 2017 Nov;14(5):4065-4072. doi: 10.3892/etm.2017.5091. Epub 2017 Sep 1.
3 Contrast-induced nephropathy is associated with new-onset atrial fibrillation in acute coronary syndrome after cardiac catheterization: Systemic review and meta-analysis.Ann Noninvasive Electrocardiol. 2019 May;24(3):e12625. doi: 10.1111/anec.12625. Epub 2019 Jan 7.
4 3'UTR Polymorphism in ACSL1 Gene Correlates with Expression Levels and Poor Clinical Outcome in Colon Cancer Patients.PLoS One. 2016 Dec 19;11(12):e0168423. doi: 10.1371/journal.pone.0168423. eCollection 2016.
5 Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation.J Proteome Res. 2019 Mar 1;18(3):960-969. doi: 10.1021/acs.jproteome.8b00663. Epub 2019 Jan 9.
6 Differential Proteomic Analysis of Dimethylnitrosamine (DMN)-Induced Liver Fibrosis.Proteomics. 2017 Nov;17(22). doi: 10.1002/pmic.201700267.
7 Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway.Cancer Res. 2015 Mar 1;75(5):846-57. doi: 10.1158/0008-5472.CAN-14-1192. Epub 2015 Jan 15.
8 Alterations in intestinal fatty acid metabolism in inflammatory bowel disease.Biochim Biophys Acta. 2006 Mar;1762(3):341-50. doi: 10.1016/j.bbadis.2005.12.006. Epub 2006 Jan 5.
9 High Membranous Expression of Fatty Acid Transport Protein 4 Is Associated with Tumorigenesis and Tumor Progression in Clear Cell Renal Cell Carcinoma.Dis Markers. 2019 Apr 4;2019:5702026. doi: 10.1155/2019/5702026. eCollection 2019.
10 The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy.Ren Fail. 2019 Nov;41(1):821-831. doi: 10.1080/0886022X.2019.1655450.
11 Beneficial effects of neomangiferin on high fat diet-induced nonalcoholic fatty liver disease in rats.Int Immunopharmacol. 2015 Mar;25(1):218-28. doi: 10.1016/j.intimp.2015.01.027. Epub 2015 Feb 7.
12 SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle.Diabetes. 2015 Jul;64(7):2420-31. doi: 10.2337/db15-0115. Epub 2015 Mar 17.
13 Genetic association of long-chain acyl-CoA synthetase 1 variants with fasting glucose, diabetes, and subclinical atherosclerosis.J Lipid Res. 2016 Mar;57(3):433-42. doi: 10.1194/jlr.M064592. Epub 2015 Dec 28.
14 The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer.Oncotarget. 2017 Dec 21;9(5):5919-5930. doi: 10.18632/oncotarget.23592. eCollection 2018 Jan 19.
15 HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.Biochem Biophys Res Commun. 2017 Mar 11;484(3):565-571. doi: 10.1016/j.bbrc.2017.01.126. Epub 2017 Jan 26.
16 MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA.Biochem Biophys Res Commun. 2014 Feb 7;444(2):270-5. doi: 10.1016/j.bbrc.2014.01.051. Epub 2014 Jan 22.
17 Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction.Antioxid Redox Signal. 2014 Aug 1;21(4):588-600. doi: 10.1089/ars.2013.5248. Epub 2013 Oct 5.
18 Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.PLoS One. 2016 May 12;11(5):e0155660. doi: 10.1371/journal.pone.0155660. eCollection 2016.
19 Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes.Nat Commun. 2018 Jul 27;9(1):2941. doi: 10.1038/s41467-018-04951-w.
20 Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1.Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E715-24. doi: 10.1073/pnas.1111600109. Epub 2012 Jan 17.
21 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
22 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
23 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
24 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
25 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
26 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
27 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
28 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
29 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
30 Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia. J Cell Mol Med. 2018 Mar;22(3):1614-1626.
31 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
32 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
33 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
34 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
35 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
36 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
37 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
38 Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 2012 Aug;11(8):1703-12.
39 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
40 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
41 Linalool is a PPARalpha ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014 Jun;55(6):1098-110.
42 Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model. BMC Urol. 2005 Mar 24;5:5.
43 Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007 Apr;12(3):328-40. doi: 10.1177/1087057107299261. Epub 2007 Mar 22.
44 Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem Biol Interact. 2009 Oct 30;181(3):309-15. doi: 10.1016/j.cbi.2009.08.003. Epub 2009 Aug 12.
45 Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells. Toxicol Sci. 2018 Aug 1;164(2):477-488.
46 Short-chain fatty acids enhance nuclear receptor activity through mitogen-activated protein kinase activation and histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2004 May 4;101(18):7199-204.
47 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
48 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
49 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
50 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
51 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.