General Information of Drug Off-Target (DOT) (ID: OTPYN8A3)

DOT Name Mitofusin-2 (MFN2)
Synonyms EC 3.6.5.-; Transmembrane GTPase MFN2
Gene Name MFN2
Related Disease
Advanced cancer ( )
Obsolete axonal hereditary motor and sensory neuropathy ( )
Peripheral neuropathy ( )
Autosomal dominant optic atrophy ( )
B-cell neoplasm ( )
Bladder cancer ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cardiac failure ( )
Cervical carcinoma ( )
Charcot-Marie-Tooth disease type 2A2 ( )
Charcot-Marie-Tooth disease, axonal, autosomal recessive, type 2a2b; ( )
Congestive heart failure ( )
Diabetic kidney disease ( )
Diabetic retinopathy ( )
Essential hypertension ( )
Hereditary motor and sensory neuropathy ( )
High blood pressure ( )
Liver cancer ( )
Melanoma ( )
Mitochondrial disease ( )
Myocardial ischemia ( )
Nervous system disease ( )
Neuroblastoma ( )
Non-insulin dependent diabetes ( )
Parkinson disease ( )
Prediabetes syndrome ( )
Pulmonary fibrosis ( )
Stroke ( )
Tuberculosis ( )
Alzheimer disease ( )
Axonal neuropathy ( )
Gastric cancer ( )
Lung adenocarcinoma ( )
Obesity ( )
Stomach cancer ( )
Hereditary motor and sensory neuropathy type 6 ( )
Multiple symmetric lipomatosis ( )
Severe early-onset axonal neuropathy due to MFN2 deficiency ( )
Atopic dermatitis ( )
Breast cancer ( )
Breast carcinoma ( )
Carotid stenosis ( )
Charcot-Marie-Tooth disease type 2 ( )
Myocardial infarction ( )
Pancreatic cancer ( )
Restless legs syndrome ( )
UniProt ID
MFN2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6JFK; 6JFL; 6JFM
EC Number
3.6.5.-
Pfam ID
PF00350 ; PF04799
Sequence
MSLLFSRCNSIVTVKKNKRHMAEVNASPLKHFVTAKKKINGIFEQLGAYIQESATFLEDT
YRNAELDPVTTEEQVLDVKGYLSKVRGISEVLARRHMKVAFFGRTSNGKSTVINAMLWDK
VLPSGIGHTTNCFLRVEGTDGHEAFLLTEGSEEKRSAKTVNQLAHALHQDKQLHAGSLVS
VMWPNSKCPLLKDDLVLMDSPGIDVTTELDSWIDKFCLDADVFVLVANSESTLMQTEKHF
FHKVSERLSRPNIFILNNRWDASASEPEYMEEVRRQHMERCTSFLVDELGVVDRSQAGDR
IFFVSAKEVLNARIQKAQGMPEGGGALAEGFQVRMFEFQNFERRFEECISQSAVKTKFEQ
HTVRAKQIAEAVRLIMDSLHMAAREQQVYCEEMREERQDRLKFIDKQLELLAQDYKLRIK
QITEEVERQVSTAMAEEIRRLSVLVDDYQMDFHPSPVVLKVYKNELHRHIEEGLGRNMSD
RCSTAITNSLQTMQQDMIDGLKPLLPVSVRSQIDMLVPRQCFSLNYDLNCDKLCADFQED
IEFHFSLGWTMLVNRFLGPKNSRRALMGYNDQVQRPIPLTPANPSMPPLPQGSLTQEEFM
VSMVTGLASLTSRTSMGILVVGGVVWKAVGWRLIALSFGLYGLLYVYERLTWTTKAKERA
FKRQFVEHASEKLQLVISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQEIAAMNKK
IEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
Function
Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks. Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes. Plays an important role in the regulation of vascular smooth muscle cell proliferation. Involved in the clearance of damaged mitochondria via selective autophagy (mitophagy). Is required for PRKN recruitment to dysfunctional mitochondria. Involved in the control of unfolded protein response (UPR) upon ER stress including activation of apoptosis and autophagy during ER stress. Acts as an upstream regulator of EIF2AK3 and suppresses EIF2AK3 activation under basal conditions.
Tissue Specificity Ubiquitous; expressed at low level. Highly expressed in heart and kidney.
KEGG Pathway
Mitophagy - animal (hsa04137 )
NOD-like receptor sig.ling pathway (hsa04621 )
Parkinson disease (hsa05012 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Reactome Pathway
RHOT2 GTPase cycle (R-HSA-9013419 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
PINK1-PRKN Mediated Mitophagy (R-HSA-5205685 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Biomarker [1]
Obsolete axonal hereditary motor and sensory neuropathy DISXSTX1 Definitive Semidominant [2]
Peripheral neuropathy DIS7KN5G Definitive Genetic Variation [3]
Autosomal dominant optic atrophy DISOCR1N Strong Genetic Variation [4]
B-cell neoplasm DISVY326 Strong Biomarker [5]
Bladder cancer DISUHNM0 Strong Altered Expression [6]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [7]
Cardiac failure DISDC067 Strong Altered Expression [8]
Cervical carcinoma DIST4S00 Strong Biomarker [9]
Charcot-Marie-Tooth disease type 2A2 DIS8WD1Q Strong Autosomal dominant [10]
Charcot-Marie-Tooth disease, axonal, autosomal recessive, type 2a2b; DISGXQJM Strong Autosomal recessive [11]
Congestive heart failure DIS32MEA Strong Altered Expression [8]
Diabetic kidney disease DISJMWEY Strong Therapeutic [12]
Diabetic retinopathy DISHGUJM Strong Biomarker [13]
Essential hypertension DIS7WI98 Strong Posttranslational Modification [14]
Hereditary motor and sensory neuropathy DISR0X2K Strong Genetic Variation [15]
High blood pressure DISY2OHH Strong Biomarker [16]
Liver cancer DISDE4BI Strong Biomarker [7]
Melanoma DIS1RRCY Strong Biomarker [17]
Mitochondrial disease DISKAHA3 Strong Genetic Variation [18]
Myocardial ischemia DISFTVXF Strong Altered Expression [19]
Nervous system disease DISJ7GGT Strong Genetic Variation [20]
Neuroblastoma DISVZBI4 Strong Biomarker [21]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [22]
Parkinson disease DISQVHKL Strong Altered Expression [23]
Prediabetes syndrome DISH2I53 Strong Biomarker [24]
Pulmonary fibrosis DISQKVLA Strong Biomarker [25]
Stroke DISX6UHX Strong Genetic Variation [26]
Tuberculosis DIS2YIMD Strong Biomarker [27]
Alzheimer disease DISF8S70 moderate Altered Expression [28]
Axonal neuropathy DIS5S2BC moderate Genetic Variation [29]
Gastric cancer DISXGOUK moderate Altered Expression [30]
Lung adenocarcinoma DISD51WR moderate Biomarker [31]
Obesity DIS47Y1K moderate Biomarker [32]
Stomach cancer DISKIJSX moderate Altered Expression [30]
Hereditary motor and sensory neuropathy type 6 DIS27OAR Supportive Autosomal dominant [33]
Multiple symmetric lipomatosis DIS22LMD Supportive Autosomal dominant [34]
Severe early-onset axonal neuropathy due to MFN2 deficiency DISIYHFA Supportive Autosomal recessive [35]
Atopic dermatitis DISTCP41 Limited Genetic Variation [36]
Breast cancer DIS7DPX1 Limited Biomarker [37]
Breast carcinoma DIS2UE88 Limited Biomarker [37]
Carotid stenosis DISZA8D0 Limited Therapeutic [38]
Charcot-Marie-Tooth disease type 2 DISR30O9 Limited Genetic Variation [3]
Myocardial infarction DIS655KI Limited Therapeutic [39]
Pancreatic cancer DISJC981 Limited Biomarker [40]
Restless legs syndrome DISNWY00 Limited Biomarker [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Azide DM5XZYB Investigative Mitofusin-2 (MFN2) decreases the response to substance of Azide. [58]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Mitofusin-2 (MFN2). [42]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Mitofusin-2 (MFN2). [44]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mitofusin-2 (MFN2). [45]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Mitofusin-2 (MFN2). [46]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Mitofusin-2 (MFN2). [47]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Mitofusin-2 (MFN2). [48]
Melatonin DMKWFBT Approved Melatonin increases the expression of Mitofusin-2 (MFN2). [49]
Efavirenz DMC0GSJ Approved Efavirenz increases the expression of Mitofusin-2 (MFN2). [50]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Mitofusin-2 (MFN2). [51]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Mitofusin-2 (MFN2). [52]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Mitofusin-2 (MFN2). [53]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Mitofusin-2 (MFN2). [52]
CERC-801 DM3SZ7P Phase 2 CERC-801 increases the expression of Mitofusin-2 (MFN2). [54]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Mitofusin-2 (MFN2). [50]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Mitofusin-2 (MFN2). [56]
AM251 DMTAWHL Investigative AM251 decreases the expression of Mitofusin-2 (MFN2). [57]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the methylation of Mitofusin-2 (MFN2). [43]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Mitofusin-2 (MFN2). [55]
------------------------------------------------------------------------------------

References

1 Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca(2+) handling in HeLa cells.Biochim Biophys Acta Mol Cell Res. 2019 Sep;1866(9):1475-1486. doi: 10.1016/j.bbamcr.2019.06.006. Epub 2019 Jun 17.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Enhancing folic acid metabolism suppresses defects associated with loss of Drosophila mitofusin.Cell Death Dis. 2019 Mar 25;10(4):288. doi: 10.1038/s41419-019-1496-2.
4 The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype.Brain. 2012 Jan;135(Pt 1):23-34. doi: 10.1093/brain/awr323. Epub 2011 Dec 20.
5 Downregulation of sonic hedgehog signaling in the hippocampus leads to neuronal apoptosis in high-fat diet-fed mice.Behav Brain Res. 2019 Jul 23;367:91-100. doi: 10.1016/j.bbr.2019.03.055. Epub 2019 Mar 30.
6 Mitofusin 2 inhibits bladder cancer cell proliferation and invasion via the Wnt/-catenin pathway.Oncol Lett. 2019 Sep;18(3):2434-2442. doi: 10.3892/ol.2019.10570. Epub 2019 Jul 5.
7 LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway.Cancer Cell Int. 2019 Mar 18;19:60. doi: 10.1186/s12935-019-0778-1. eCollection 2019.
8 Mitochondrial Quality Control in Aging and Heart Failure: Influence of Ketone Bodies and Mitofusin-Stabilizing Peptides.Front Physiol. 2019 Apr 10;10:382. doi: 10.3389/fphys.2019.00382. eCollection 2019.
9 Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-B signal pathway.Cancer Cell Int. 2019 Jul 29;19:197. doi: 10.1186/s12935-019-0916-9. eCollection 2019.
10 Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology. 2005 Jul 26;65(2):197-204. doi: 10.1212/01.wnl.0000168898.76071.70.
11 MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain. 2006 Aug;129(Pt 8):2093-102. doi: 10.1093/brain/awl126. Epub 2006 May 19.
12 Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy.J Mol Endocrinol. 2016 Nov;57(4):233-249. doi: 10.1530/JME-16-0031.
13 Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1617-1626. doi: 10.1016/j.bbadis.2019.03.013. Epub 2019 Mar 25.
14 Association of mitofusin 2 methylation and essential hypertension: a case-control study in a Chinese population.Hypertens Res. 2018 Aug;41(8):605-613. doi: 10.1038/s41440-018-0057-x. Epub 2018 Jun 7.
15 Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations.Arch Neurol. 2009 Dec;66(12):1511-6. doi: 10.1001/archneurol.2009.284.
16 Single Nucleotide Polymorphisms (SNPs) Genotyping Reveals that Mfn2 Polymorphisms are Associated with Thoracic Aortic Dissection in Han Chinese Population.Med Sci Monit. 2019 Apr 3;25:2419-2428. doi: 10.12659/MSM.915272.
17 Expression of mitochondrial dynamics markers during melanoma progression: Comparative study of head and neck cutaneous and mucosal melanomas.J Oral Pathol Med. 2019 May;48(5):373-381. doi: 10.1111/jop.12855. Epub 2019 Apr 10.
18 Gemini-Based Lipoplexes Complement the Mitochondrial Phenotype in MFN1-Knockout Mouse Embryonic Fibroblasts.Mol Pharm. 2019 Dec 2;16(12):4787-4796. doi: 10.1021/acs.molpharmaceut.9b00449. Epub 2019 Nov 5.
19 Mitochondrial Morphology, Dynamics, and Function in Human Pressure Overload or Ischemic Heart Disease With Preserved or Reduced Ejection Fraction.Circ Heart Fail. 2019 Feb;12(2):e005131. doi: 10.1161/CIRCHEARTFAILURE.118.005131.
20 Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art.Mol Neurobiol. 2019 Sep;56(9):6460-6471. doi: 10.1007/s12035-019-1533-2. Epub 2019 Mar 4.
21 Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma N2a cells dysfunction and endoplasmic reticulum stress via the Yap-Hippo pathway.J Physiol Sci. 2019 Sep;69(5):697-709. doi: 10.1007/s12576-019-00685-6. Epub 2019 May 27.
22 The effect of endurance training with crocin consumption on the levels of MFN2 and DRP1 gene expression and glucose and insulin indices in the muscle tissue of diabetic rats.J Food Biochem. 2020 Feb;44(2):e13125. doi: 10.1111/jfbc.13125. Epub 2019 Dec 17.
23 Ferulic acid reinstates mitochondrial dynamics through PGC1 expression modulation in 6-hydroxydopamine lesioned rats.Phytother Res. 2020 Jan;34(1):214-226. doi: 10.1002/ptr.6523. Epub 2019 Oct 27.
24 Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress.Am J Physiol Heart Circ Physiol. 2016 Oct 1;311(4):H927-H943. doi: 10.1152/ajpheart.00049.2016. Epub 2016 Aug 12.
25 Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis.Nat Commun. 2019 Jul 29;10(1):3390. doi: 10.1038/s41467-019-11327-1.
26 Mutation screening of mitofusin 2 in Charcot-Marie-Tooth disease type 2.J Neurol. 2011 Jul;258(7):1234-9. doi: 10.1007/s00415-011-5910-7. Epub 2011 Jan 22.
27 Discovery of susceptibility loci associated with tuberculosis in Han Chinese.Hum Mol Genet. 2017 Dec 1;26(23):4752-4763. doi: 10.1093/hmg/ddx365.
28 Neuronal susceptibility to beta-amyloid toxicity and ischemic injury involves histone deacetylase-2 regulation of endophilin-B1.Brain Pathol. 2019 Mar;29(2):164-175. doi: 10.1111/bpa.12647. Epub 2018 Oct 5.
29 Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet. 2015 Aug;47(8):926-32. doi: 10.1038/ng.3354. Epub 2015 Jul 13.
30 Overexpression of Mitochondrial GTPase MFN2 Represents a Negative Prognostic Marker in Human Gastric Cancer and Its Inhibition Exerts Anti-Cancer Effects.J Cancer. 2017 Apr 9;8(7):1153-1161. doi: 10.7150/jca.17986. eCollection 2017.
31 In vivo and in vitro effects of hyperplasia suppressor gene on the proliferation and apoptosis of lung adenocarcinoma A549 cells.Biosci Rep. 2018 Oct 2;38(5):BSR20180391. doi: 10.1042/BSR20180391. Print 2018 Oct 31.
32 Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis.EMBO Rep. 2017 Jul;18(7):1123-1138. doi: 10.15252/embr.201643827. Epub 2017 May 24.
33 Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006 Feb;59(2):276-81. doi: 10.1002/ana.20797.
34 Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Hum Mol Genet. 2015 Sep 15;24(18):5109-14. doi: 10.1093/hmg/ddv229. Epub 2015 Jun 17.
35 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
36 Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms.Am J Hum Genet. 2015 Jan 8;96(1):104-20. doi: 10.1016/j.ajhg.2014.12.004.
37 MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells.RNA Biol. 2019 Jul;16(7):918-929. doi: 10.1080/15476286.2019.1600999. Epub 2019 Apr 25.
38 Dysregulation of HSG triggers vascular proliferative disorders.Nat Cell Biol. 2004 Sep;6(9):872-83. doi: 10.1038/ncb1161. Epub 2004 Aug 22.
39 Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition.Basic Res Cardiol. 2011 Jan;106(1):99-109. doi: 10.1007/s00395-010-0122-3. Epub 2010 Oct 1.
40 miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission.Int J Oncol. 2018 Jul;53(1):124-136. doi: 10.3892/ijo.2018.4380. Epub 2018 Apr 26.
41 Underestimated associated features in CMT neuropathies: clinical indicators for the causative gene?.Brain Behav. 2016 Mar 4;6(4):e00451. doi: 10.1002/brb3.451. eCollection 2016 Apr.
42 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
43 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
44 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
45 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
46 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
47 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
48 5-Fluorouracil inhibits neural differentiation via Mfn1/2 reduction in human induced pluripotent stem cells. J Toxicol Sci. 2018;43(12):727-734. doi: 10.2131/jts.43.727.
49 Melatonin prevents blood-retinal barrier breakdown and mitochondrial dysfunction in high glucose and hypoxia-induced in vitro diabetic macular edema model. Toxicol In Vitro. 2021 Sep;75:105191. doi: 10.1016/j.tiv.2021.105191. Epub 2021 May 5.
50 Lon protease: a novel mitochondrial matrix protein in the interconnection between drug-induced mitochondrial dysfunction and endoplasmic reticulum stress. Br J Pharmacol. 2017 Dec;174(23):4409-4429. doi: 10.1111/bph.14045. Epub 2017 Nov 7.
51 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
52 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
53 Synthetic oleanane triterpenoid derivative CDDO-Me disrupts cellular bioenergetics to suppress pancreatic ductal adenocarcinoma via targeting SLC1A5. J Biochem Mol Toxicol. 2022 Nov;36(11):e23192. doi: 10.1002/jbt.23192. Epub 2022 Aug 5.
54 Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. J Appl Physiol (1985). 2017 Jun 1;122(6):1462-1469. doi: 10.1152/japplphysiol.00018.2017. Epub 2017 Mar 16.
55 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
56 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
57 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.
58 Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am J Physiol Cell Physiol. 2011 Mar;300(3):C447-55. doi: 10.1152/ajpcell.00402.2010. Epub 2010 Dec 15.