General Information of Drug Off-Target (DOT) (ID: OTSUVAL2)

DOT Name Serine protease inhibitor Kazal-type 1 (SPINK1)
Synonyms Pancreatic secretory trypsin inhibitor; Tumor-associated trypsin inhibitor; TATI
Gene Name SPINK1
Related Disease
Ovarian cancer ( )
Acute intermittent hepatic porphyria ( )
Acute myelogenous leukaemia ( )
Adenocarcinoma ( )
Advanced cancer ( )
Bladder cancer ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Citrullinemia type II ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Cystic fibrosis ( )
Ductal carcinoma ( )
Epithelial ovarian cancer ( )
Exocrine pancreatic insufficiency ( )
Hereditary chronic pancreatitis ( )
Lymphoma ( )
Non-alcoholic fatty liver disease ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Obesity ( )
Osteosarcoma ( )
Ovarian neoplasm ( )
Pancreas disorder ( )
Pancreatic tumour ( )
Primary hyperparathyroidism ( )
Renal cell carcinoma ( )
Tropical pancreatitis ( )
Type-1 diabetes ( )
Type-1/2 diabetes ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Vibrio cholerae infection ( )
Carcinoma ( )
Colorectal adenocarcinoma ( )
Hepatitis B virus infection ( )
Liver cirrhosis ( )
Lung adenocarcinoma ( )
Neoplasm ( )
Squamous cell carcinoma ( )
Hypercalcaemia ( )
Neuroblastoma ( )
Pancreatic adenocarcinoma ( )
Prostate neoplasm ( )
UniProt ID
ISK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CGI; 1CGJ; 1HPT; 7QE8; 7QE9
Pfam ID
PF00050
Sequence
MKVTGIFLLSALALLSLSGNTGADSLGREAKCYNELNGCTKIYDPVCGTDGNTYPNECVL
CFENRKRQTSILIQKSGPC
Function
Serine protease inhibitor which exhibits anti-trypsin activity. In the pancreas, protects against trypsin-catalyzed premature activation of zymogens; In the male reproductive tract, binds to sperm heads where it modulates sperm capacitance by inhibiting calcium uptake and nitrogen oxide (NO) production.

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Ovarian cancer DISZJHAP Definitive Biomarker [1]
Acute intermittent hepatic porphyria DIS80J7E Strong Genetic Variation [2]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [3]
Adenocarcinoma DIS3IHTY Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Bladder cancer DISUHNM0 Strong Altered Expression [5]
Bone osteosarcoma DIST1004 Strong Biomarker [6]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Citrullinemia type II DIS2UURN Strong Altered Expression [8]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [9]
Colon cancer DISVC52G Strong Altered Expression [10]
Colon carcinoma DISJYKUO Strong Altered Expression [10]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [11]
Colorectal neoplasm DISR1UCN Strong Altered Expression [12]
Cystic fibrosis DIS2OK1Q Strong Genetic Variation [13]
Ductal carcinoma DIS15EA5 Strong Altered Expression [14]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [1]
Exocrine pancreatic insufficiency DISCZYU2 Strong Biomarker [15]
Hereditary chronic pancreatitis DISF0J1Q Strong Autosomal dominant [16]
Lymphoma DISN6V4S Strong Altered Expression [17]
Non-alcoholic fatty liver disease DISDG1NL Strong Genetic Variation [18]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [19]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [20]
Obesity DIS47Y1K Strong Biomarker [21]
Osteosarcoma DISLQ7E2 Strong Biomarker [6]
Ovarian neoplasm DISEAFTY Strong Biomarker [1]
Pancreas disorder DISDH7NI Strong Biomarker [22]
Pancreatic tumour DIS3U0LK Strong Biomarker [23]
Primary hyperparathyroidism DISB4U1Q Strong Genetic Variation [24]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [9]
Tropical pancreatitis DIS3OT4T Strong Autosomal dominant [25]
Type-1 diabetes DIS7HLUB Strong Genetic Variation [26]
Type-1/2 diabetes DISIUHAP Strong Genetic Variation [27]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [5]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [5]
Vibrio cholerae infection DISW7E3U Strong Biomarker [28]
Carcinoma DISH9F1N moderate Altered Expression [29]
Colorectal adenocarcinoma DISPQOUB moderate Genetic Variation [11]
Hepatitis B virus infection DISLQ2XY moderate Biomarker [30]
Liver cirrhosis DIS4G1GX moderate Altered Expression [30]
Lung adenocarcinoma DISD51WR moderate Biomarker [31]
Neoplasm DISZKGEW Disputed Biomarker [6]
Squamous cell carcinoma DISQVIFL Disputed Biomarker [32]
Hypercalcaemia DISKQ2K7 Limited Genetic Variation [33]
Neuroblastoma DISVZBI4 Limited Altered Expression [34]
Pancreatic adenocarcinoma DISKHX7S Limited Genetic Variation [35]
Prostate neoplasm DISHDKGQ Limited Biomarker [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [37]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [38]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [39]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [40]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [42]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [43]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [44]
Menadione DMSJDTY Approved Menadione affects the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [45]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [46]
Folic acid DMEMBJC Approved Folic acid increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [47]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [48]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [49]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [50]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [51]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [52]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Serine protease inhibitor Kazal-type 1 (SPINK1). [53]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Serine protease inhibitor Kazal-type 1 (SPINK1). [41]
------------------------------------------------------------------------------------

References

1 Emerging Roles of SPINK1 in Cancer.Clin Chem. 2016 Mar;62(3):449-57. doi: 10.1373/clinchem.2015.241513. Epub 2015 Dec 11.
2 Human cationic trypsinogen but not serine peptidase inhibitor, Kazal type 1 variants increase the risk of type 1 autoimmune pancreatitis.J Gastroenterol Hepatol. 2014 Dec;29(12):2038-42. doi: 10.1111/jgh.12649.
3 LSD1/KDM1A inhibitors in clinical trials: advances and prospects.J Hematol Oncol. 2019 Dec 4;12(1):129. doi: 10.1186/s13045-019-0811-9.
4 RNA-seq analysis of lung adenocarcinomas reveals different gene expression profiles between smoking and nonsmoking patients.Tumour Biol. 2015 Nov;36(11):8993-9003. doi: 10.1007/s13277-015-3576-y. Epub 2015 Jun 17.
5 Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy.Cancer Biomark. 2019;26(3):281-289. doi: 10.3233/CBM-182143.
6 A novel multifunctional carbon aerogel-coated platform for osteosarcoma therapy and enhanced bone regeneration.J Mater Chem B. 2020 Jan 22;8(3):368-379. doi: 10.1039/c9tb02383f.
7 Combined genomic and phenotype screening reveals secretory factor SPINK1 as an invasion and survival factor associated with patient prognosis in breast cancer.EMBO Mol Med. 2011 Aug;3(8):451-64. doi: 10.1002/emmm.201100150. Epub 2011 Jun 8.
8 Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate.J Inherit Metab Dis. 2008 Dec;31 Suppl 2:S343-7. doi: 10.1007/s10545-008-0914-x. Epub 2008 Oct 29.
9 Tumor-associated trypsin inhibitor in normal and malignant renal tissue and in serum of renal-cell carcinoma patients.Int J Cancer. 1999 Nov 12;83(4):486-90. doi: 10.1002/(sici)1097-0215(19991112)83:4<486::aid-ijc9>3.0.co;2-o.
10 Interleukin-6 increases expression of serine protease inhibitor Kazal type 1 through STAT3 in colorectal adenocarcinoma.Mol Carcinog. 2016 Dec;55(12):2010-2023. doi: 10.1002/mc.22447. Epub 2015 Dec 14.
11 MAPK inhibitors induce serine peptidase inhibitor Kazal type 1 (SPINK1) secretion in BRAF V600E-mutant colorectal adenocarcinoma.Mol Oncol. 2018 Feb;12(2):224-238. doi: 10.1002/1878-0261.12160. Epub 2017 Dec 27.
12 Co-expression of trypsin and tumour-associated trypsin inhibitor (TATI) in colorectal adenocarcinomas.Histol Histopathol. 2003 Oct;18(4):1181-8. doi: 10.14670/HH-18.1181.
13 Hereditary pancreatitis of 3 Chinese children: Case report and literature review.Medicine (Baltimore). 2016 Sep;95(36):e4604. doi: 10.1097/MD.0000000000004604.
14 Clinical significance and EZH2, ERG and SPINK1 protein expression in pure and mixed ductal adenocarcinoma of the prostate.Histol Histopathol. 2019 Apr;34(4):381-390. doi: 10.14670/HH-18-046. Epub 2018 Sep 24.
15 Natural history of SPINK1 germline mutation related-pancreatitis.EBioMedicine. 2019 Oct;48:581-591. doi: 10.1016/j.ebiom.2019.09.032. Epub 2019 Oct 15.
16 The child with epilepsy. Teaching children about their seizures and medications. MCN Am J Matern Child Nurs. 1979 May-Jun;4(3):161-2. doi: 10.1097/00005721-197905000-00006.
17 Expression of pancreatic secretory trypsin inhibitor gene in human colorectal tumor.Cancer. 1990 Nov 15;66(10):2144-9. doi: 10.1002/1097-0142(19901115)66:10<2144::aid-cncr2820661017>3.0.co;2-#.
18 Common SPINK-1 mutations do not predispose to the development of non-alcoholic fatty liver disease.Ann Hepatol. 2009 Apr-Jun;8(2):116-9.
19 The SPINK1 N34S mutation is not associated with Type 2 diabetes mellitus in a population of the USA.Diabet Med. 2005 Jun;22(6):744-8. doi: 10.1111/j.1464-5491.2005.01513.x.
20 SPINK1 is a prognosis predicting factor of non-small cell lung cancer and regulates redox homeostasis.Oncol Lett. 2019 Dec;18(6):6899-6908. doi: 10.3892/ol.2019.11005. Epub 2019 Oct 18.
21 Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease.J Hepatol. 2008 Nov;49(5):810-20. doi: 10.1016/j.jhep.2008.05.016. Epub 2008 Jun 10.
22 Roles of serine protease inhibitor Kazal type 1 (SPINK1) in pancreatic diseases.Exp Anim. 2011;60(5):433-44. doi: 10.1538/expanim.60.433.
23 Chronic pancreatitis and pancreatic cancer: prediction and mechanism.Clin Gastroenterol Hepatol. 2009 Nov;7(11 Suppl):S23-8. doi: 10.1016/j.cgh.2009.07.042.
24 Multifactorial genesis of pancreatitis in primary hyperparathyroidism: evidence for "protective" (PRSS2) and "destructive" (CTRC) genetic factors.Exp Clin Endocrinol Diabetes. 2011 Jan;119(1):26-9. doi: 10.1055/s-0030-1255106. Epub 2010 Jul 12.
25 Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000 Jun;25(2):213-6. doi: 10.1038/76088.
26 Characterization of two deletions of the CTRC locus.Mol Genet Metab. 2013 Jul;109(3):296-300. doi: 10.1016/j.ymgme.2013.04.022. Epub 2013 May 10.
27 The contribution of the SPINK1 c.194+2T>C mutation to the clinical course of idiopathic chronic pancreatitis in Chinese patients.Dig Liver Dis. 2013 Jan;45(1):38-42. doi: 10.1016/j.dld.2012.08.008. Epub 2012 Sep 25.
28 Regulation by ToxR-Like Proteins Converges on vttRB Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae.J Bacteriol. 2016 May 13;198(11):1675-1682. doi: 10.1128/JB.00130-16. Print 2016 Jun 1.
29 Pancreatic secretory trypsin inhibitor causes autocrine-mediated migration and invasion in bladder cancer and phosphorylates the EGF receptor, Akt2 and Akt3, and ERK1 and ERK2.Am J Physiol Renal Physiol. 2013 Aug 1;305(3):F382-9. doi: 10.1152/ajprenal.00357.2012. Epub 2013 May 22.
30 Hepatitis B Virus X Protein-Induced Serine Protease Inhibitor Kazal Type 1 Is Associated with the Progression of HBV-Related Diseases.Biomed Res Int. 2019 May 22;2019:9321494. doi: 10.1155/2019/9321494. eCollection 2019.
31 SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker.BMB Rep. 2018 Dec;51(12):648-653. doi: 10.5483/BMBRep.2018.51.12.205.
32 Integrated molecular portrait of non-small cell lung cancers.BMC Med Genomics. 2013 Dec 3;6:53. doi: 10.1186/1755-8794-6-53.
33 Cinacalcet sustainedly prevents pancreatitis in a child with a compound heterozygous SPINK1/AP2S1 mutation.Pancreatology. 2019 Sep;19(6):801-804. doi: 10.1016/j.pan.2019.07.045. Epub 2019 Jul 30.
34 Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway.Oncogene. 2017 Nov 30;36(48):6701-6711. doi: 10.1038/onc.2017.267. Epub 2017 Aug 7.
35 CFTR, SPINK1, PRSS1, and CTRC mutations are not associated with pancreatic cancer in German patients.Pancreas. 2014 Oct;43(7):1078-82. doi: 10.1097/MPA.0000000000000166.
36 Integrative molecular profiling of routine clinical prostate cancer specimens.Ann Oncol. 2015 Jun;26(6):1110-1118. doi: 10.1093/annonc/mdv134. Epub 2015 Mar 3.
37 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
38 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
39 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
40 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
41 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
42 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
43 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
44 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
45 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
46 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
47 High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells. Br J Nutr. 2008 Apr;99(4):703-8.
48 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
49 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
50 Prediction of drug-induced liver injury using keratinocytes. J Appl Toxicol. 2017 Jul;37(7):863-872. doi: 10.1002/jat.3435. Epub 2017 Jan 31.
51 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
52 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
53 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.