General Information of Drug Off-Target (DOT) (ID: OTUQ4CQY)

DOT Name AT-rich interactive domain-containing protein 5B (ARID5B)
Synonyms ARID domain-containing protein 5B; MRF1-like protein; Modulator recognition factor 2; MRF-2
Gene Name ARID5B
Related Disease
Acute myelogenous leukaemia ( )
Metabolic disorder ( )
Acute leukaemia ( )
Acute lymphocytic leukaemia ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Autoimmune disease ( )
Autoimmune disease, susceptibility to, 6 ( )
Cardiovascular disease ( )
Coronary heart disease ( )
Hypothyroidism ( )
leukaemia ( )
Nasopharyngeal carcinoma ( )
Nijmegen breakage syndrome ( )
Prostate cancer ( )
Prostate carcinoma ( )
Rheumatoid arthritis ( )
STAT3-related early-onset multisystem autoimmune disease ( )
Systemic lupus erythematosus ( )
T-cell acute lymphoblastic leukaemia ( )
Vitiligo ( )
Graves disease ( )
Childhood acute lymphoblastic leukemia ( )
Coronary atherosclerosis ( )
Leukemia ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Isolated cleft palate ( )
UniProt ID
ARI5B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1IG6; 2OEH
Pfam ID
PF01388
Sequence
MEPNSLQWVGSPCGLHGPYIFYKAFQFHLEGKPRILSLGDFFFVRCTPKDPICIAELQLL
WEERTSRQLLSSSKLYFLPEDTPQGRNSDHGEDEVIAVSEKVIVKLEDLVKWVHSDFSKW
RCGFHAGPVKTEALGRNGQKEALLKYRQSTLNSGLNFKDVLKEKADLGEDEEETNVIVLS
YPQYCRYRSMLKRIQDKPSSILTDQFALALGGIAVVSRNPQILYCRDTFDHPTLIENESI
CDEFAPNLKGRPRKKKPCPQRRDSFSGVKDSNNNSDGKAVAKVKCEARSALTKPKNNHNC
KKVSNEEKPKVAIGEECRADEQAFLVALYKYMKERKTPIERIPYLGFKQINLWTMFQAAQ
KLGGYETITARRQWKHIYDELGGNPGSTSAATCTRRHYERLILPYERFIKGEEDKPLPPI
KPRKQENSSQENENKTKVSGTKRIKHEIPKSKKEKENAPKPQDAAEVSSEQEKEQETLIS
QKSIPEPLPAADMKKKIEGYQEFSAKPLASRVDPEKDNETDQGSNSEKVAEEAGEKGPTP
PLPSAPLAPEKDSALVPGASKQPLTSPSALVDSKQESKLCCFTESPESEPQEASFPSFPT
TQPPLANQNETEDDKLPAMADYIANCTVKVDQLGSDDIHNALKQTPKVLVVQSFDMFKDK
DLTGPMNENHGLNYTPLLYSRGNPGIMSPLAKKKLLSQVSGASLSSSYPYGSPPPLISKK
KLIARDDLCSSLSQTHHGQSTDHMAVSRPSVIQHVQSFRSKPSEERKTINDIFKHEKLSR
SDPHRCSFSKHHLNPLADSYVLKQEIQEGKDKLLEKRALPHSHMPSFLADFYSSPHLHSL
YRHTEHHLHNEQTSKYPSRDMYRESENSSFPSHRHQEKLHVNYLTSLHLQDKKSAAAEAP
TDDQPTDLSLPKNPHKPTGKVLGLAHSTTGPQESKGISQFQVLGSQSRDCHPKACRVSPM
TMSGPKKYPESLSRSGKPHHVRLENFRKMEGMVHPILHRKMSPQNIGAARPIKRSLEDLD
LVIAGKKARAVSPLDPSKEVSGKEKASEQESEGSKAAHGGHSGGGSEGHKLPLSSPIFPG
LYSGSLCNSGLNSRLPAGYSHSLQYLKNQTVLSPLMQPLAFHSLVMQRGIFTSPTNSQQL
YRHLAAATPVGSSYGDLLHNSIYPLAAINPQAAFPSSQLSSVHPSTKL
Function
Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer.
Tissue Specificity Widely expressed, including in liver (at protein level).
Reactome Pathway
HDMs demethylate histones (R-HSA-3214842 )

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Genetic Variation [1]
Metabolic disorder DIS71G5H Definitive Biomarker [2]
Acute leukaemia DISDQFDI Strong Genetic Variation [1]
Acute lymphocytic leukaemia DISPX75S Strong Genetic Variation [3]
Advanced cancer DISAT1Z9 Strong Genetic Variation [4]
Arteriosclerosis DISK5QGC Strong Altered Expression [5]
Atherosclerosis DISMN9J3 Strong Altered Expression [5]
Autoimmune disease DISORMTM Strong Genetic Variation [6]
Autoimmune disease, susceptibility to, 6 DISHNUXI Strong Genetic Variation [6]
Cardiovascular disease DIS2IQDX Strong Altered Expression [5]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [7]
Hypothyroidism DISR0H6D Strong Genetic Variation [6]
leukaemia DISS7D1V Strong Genetic Variation [8]
Nasopharyngeal carcinoma DISAOTQ0 Strong Genetic Variation [9]
Nijmegen breakage syndrome DIS98HVL Strong Genetic Variation [10]
Prostate cancer DISF190Y Strong Altered Expression [11]
Prostate carcinoma DISMJPLE Strong Altered Expression [11]
Rheumatoid arthritis DISTSB4J Strong Genetic Variation [12]
STAT3-related early-onset multisystem autoimmune disease DISAXTN7 Strong Genetic Variation [6]
Systemic lupus erythematosus DISI1SZ7 Strong Genetic Variation [13]
T-cell acute lymphoblastic leukaemia DIS17AI2 Strong Genetic Variation [14]
Vitiligo DISR05SL Strong Genetic Variation [15]
Graves disease DISU4KOQ moderate Genetic Variation [16]
Childhood acute lymphoblastic leukemia DISJ5D6U Limited Altered Expression [17]
Coronary atherosclerosis DISKNDYU Limited Genetic Variation [7]
Leukemia DISNAKFL Limited Genetic Variation [8]
Neoplasm DISZKGEW Limited Biomarker [18]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [7]
Isolated cleft palate DISV80CD No Known Unknown [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Methotrexate DM2TEOL Approved AT-rich interactive domain-containing protein 5B (ARID5B) affects the abundance of Methotrexate. [43]
------------------------------------------------------------------------------------
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved AT-rich interactive domain-containing protein 5B (ARID5B) affects the response to substance of Fluorouracil. [44]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [21]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [22]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [23]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [24]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [25]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [27]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [28]
Triclosan DMZUR4N Approved Triclosan increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [29]
Panobinostat DM58WKG Approved Panobinostat increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [28]
Folic acid DMEMBJC Approved Folic acid decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [30]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [31]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [32]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [33]
Celastrol DMWQIJX Preclinical Celastrol decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [36]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [37]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [38]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [39]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [40]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [41]
biochanin A DM0HPWY Investigative biochanin A increases the expression of AT-rich interactive domain-containing protein 5B (ARID5B). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of AT-rich interactive domain-containing protein 5B (ARID5B). [26]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of AT-rich interactive domain-containing protein 5B (ARID5B). [34]
------------------------------------------------------------------------------------

References

1 The functional polymorphisms of ARID5B and IKZF1 are associated with acute myeloid leukemia risk in a Han Chinese population.Gene. 2018 Mar 20;647:115-120. doi: 10.1016/j.gene.2017.12.059. Epub 2017 Dec 29.
2 Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population.J Hum Genet. 2012 Nov 26;57(11):727-33. doi: 10.1038/jhg.2012.101. Epub 2012 Sep 13.
3 Variants in ARID5B gene are associated with the development of acute lymphoblastic leukemia in Mexican children.Ann Hematol. 2019 Oct;98(10):2379-2388. doi: 10.1007/s00277-019-03730-x. Epub 2019 Jun 21.
4 Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence.Pediatr Hematol Oncol. 2016 Apr;33(3):157-67. doi: 10.3109/08880018.2016.1161685.
5 Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis.Nat Commun. 2017 Aug 30;8(1):393. doi: 10.1038/s41467-017-00517-4.
6 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
7 Relationship between Modulator Recognition Factor 2/AT-rich Interaction Domain 5B Gene Variations and Type 2 Diabetes Mellitus or Lipid Metabolism in a Northern Chinese Population.Chin Med J (Engl). 2017 May 5;130(9):1055-1061. doi: 10.4103/0366-6999.204926.
8 Association of ARID5B and IKZF1 Variants with Leukemia from Northern India.Genet Test Mol Biomarkers. 2019 Mar;23(3):176-179. doi: 10.1089/gtmb.2018.0283. Epub 2019 Feb 27.
9 A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci.Nat Genet. 2010 Jul;42(7):599-603. doi: 10.1038/ng.601. Epub 2010 May 30.
10 Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population.Leuk Res. 2011 Nov;35(11):1534-6. doi: 10.1016/j.leukres.2011.07.034. Epub 2011 Sep 1.
11 AT-rich interactive domain 5B regulates androgen receptor transcription in human prostate cancer cells.Prostate. 2018 Dec;78(16):1238-1247. doi: 10.1002/pros.23699. Epub 2018 Jul 19.
12 Genetic influences on susceptibility to rheumatoid arthritis in African-Americans.Hum Mol Genet. 2019 Mar 1;28(5):858-874. doi: 10.1093/hmg/ddy395.
13 Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus.Nat Genet. 2016 Aug;48(8):940-946. doi: 10.1038/ng.3603. Epub 2016 Jul 11.
14 Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia.Leukemia. 2018 Oct;32(10):2138-2151. doi: 10.1038/s41375-018-0110-4. Epub 2018 Mar 26.
15 Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.Nat Genet. 2016 Nov;48(11):1418-1424. doi: 10.1038/ng.3680. Epub 2016 Oct 10.
16 Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes.J Clin Endocrinol Metab. 2013 Jan;98(1):E144-52. doi: 10.1210/jc.2012-2408. Epub 2012 Nov 1.
17 ARID5B Influences Antimetabolite Drug Sensitivity and Prognosis of Acute Lymphoblastic Leukemia.Clin Cancer Res. 2020 Jan 1;26(1):256-264. doi: 10.1158/1078-0432.CCR-19-0190. Epub 2019 Oct 1.
18 ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis.Genes Dev. 2017 Dec 1;31(23-24):2343-2360. doi: 10.1101/gad.302646.117. Epub 2018 Jan 11.
19 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
20 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
21 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
22 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
23 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
24 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
25 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
26 Inorganic arsenic as an endocrine disruptor: modulation of the glucocorticoid receptor pathway in placental cells via CpG methylation. Chem Res Toxicol. 2019 Mar 18;32(3):493-499.
27 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
28 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
29 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
30 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
31 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
32 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
33 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
34 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
35 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
36 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
37 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
38 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
39 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
40 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
41 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
42 Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate. 2002 Aug 1;52(3):201-12.
43 Associations of novel genetic variations in the folate-related and ARID5B genes with the pharmacokinetics and toxicity of high-dose methotrexate in paediatric acute lymphoblastic leukaemia. Br J Haematol. 2014 Aug;166(3):410-20.
44 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.