General Information of Drug Off-Target (DOT) (ID: OTWQWCKG)

DOT Name Mothers against decapentaplegic homolog 4 (SMAD4)
Synonyms MAD homolog 4; Mothers against DPP homolog 4; Deletion target in pancreatic carcinoma 4; SMAD family member 4; SMAD 4; Smad4; hSMAD4
Gene Name SMAD4
Related Disease
Cognitive impairment ( )
Juvenile polyposis syndrome ( )
Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome ( )
Myhre syndrome ( )
Brachydactyly ( )
Breast neoplasm ( )
Carcinoma of esophagus ( )
Chronic obstructive pulmonary disease ( )
Colorectal neoplasm ( )
Familial pancreatic carcinoma ( )
Gastric adenocarcinoma ( )
Generalized juvenile polyposis/juvenile polyposis coli ( )
Head-neck squamous cell carcinoma ( )
Hereditary diffuse gastric adenocarcinoma ( )
Intrahepatic cholangiocarcinoma ( )
Liver cancer ( )
Lung adenocarcinoma ( )
Melanoma ( )
Myocardial infarction ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Osteogenesis imperfecta ( )
Pancreatic adenocarcinoma ( )
Patent ductus arteriosus ( )
Precocious puberty ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostatitis ( )
Pulmonary fibrosis ( )
Pulmonary hypertension ( )
Telangiectasis ( )
Type-1/2 diabetes ( )
Gastric cancer ( )
Gastric neoplasm ( )
Heritable pulmonary arterial hypertension ( )
Myopathy ( )
Familial thoracic aortic aneurysm and aortic dissection ( )
Hereditary hemorrhagic telangiectasia ( )
Lung cancer ( )
Pulmonary arterial hypertension ( )
Anemia ( )
Cataract ( )
Epithelial ovarian cancer ( )
Invasive ductal breast carcinoma ( )
Ovarian cancer ( )
Pancreatic cancer ( )
Pancreatic tumour ( )
UniProt ID
SMAD4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1DD1; 1G88; 1MR1; 1U7F; 1U7V; 1YGS; 5C4V; 5MEY; 5MEZ; 5MF0; 5UWU; 6YIC
Pfam ID
PF03165 ; PF03166
Sequence
MDNMSITNTPTSNDACLSIVHSLMCHRQGGESETFAKRAIESLVKKLKEKKDELDSLITA
ITTNGAHPSKCVTIQRTLDGRLQVAGRKGFPHVIYARLWRWPDLHKNELKHVKYCQYAFD
LKCDSVCVNPYHYERVVSPGIDLSGLTLQSNAPSSMMVKDEYVHDFEGQPSLSTEGHSIQ
TIQHPPSNRASTETYSTPALLAPSESNATSTANFPNIPVASTSQPASILGGSHSEGLLQI
ASGPQPGQQQNGFTGQPATYHHNSTTTWTGSRTAPYTPNLPHHQNGHLQHHPPMPPHPGH
YWPVHNELAFQPPISNHPAPEYWCSIAYFEMDVQVGETFKVPSSCPIVTVDGYVDPSGGD
RFCLGQLSNVHRTEAIERARLHIGKGVQLECKGEGDVWVRCLSDHAVFVQSYYLDREAGR
APGDAVHKIYPSAYIKVFDLRQCHRQMQQQAATAQAAAAAQAAAVAGNIPGPGSVGGIAP
AISLSAAAGIGVDDLRRLCILRMSFVKGWGPDYPRQSIKETPCWIEIHLHRALQLLDEVL
HTMPIADPQPLD
Function
In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression. Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions. Common SMAD (co-SMAD) is the coactivator and mediator of signal transduction by TGF-beta (transforming growth factor). Component of the heterotrimeric SMAD2/SMAD3-SMAD4 complex that forms in the nucleus and is required for the TGF-mediated signaling. Promotes binding of the SMAD2/SMAD4/FAST-1 complex to DNA and provides an activation function required for SMAD1 or SMAD2 to stimulate transcription. Component of the multimeric SMAD3/SMAD4/JUN/FOS complex which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. May act as a tumor suppressor. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
Cell cycle (hsa04110 )
Wnt sig.ling pathway (hsa04310 )
TGF-beta sig.ling pathway (hsa04350 )
Apelin sig.ling pathway (hsa04371 )
Hippo sig.ling pathway (hsa04390 )
Adherens junction (hsa04520 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
Th17 cell differentiation (hsa04659 )
AGE-RAGE sig.ling pathway in diabetic complications (hsa04933 )
Hepatitis B (hsa05161 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Pathways in cancer (hsa05200 )
Colorectal cancer (hsa05210 )
Pancreatic cancer (hsa05212 )
Chronic myeloid leukemia (hsa05220 )
Hepatocellular carcinoma (hsa05225 )
Gastric cancer (hsa05226 )
Reactome Pathway
Signaling by Activin (R-HSA-1502540 )
Signaling by BMP (R-HSA-201451 )
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
Downregulation of SMAD2/3 (R-HSA-2173795 )
SMAD2/SMAD3 (R-HSA-2173796 )
SMAD4 MH2 Domain Mutants in Cancer (R-HSA-3311021 )
SMAD2/3 MH2 Domain Mutants in Cancer (R-HSA-3315487 )
Transcriptional regulation of pluripotent stem cells (R-HSA-452723 )
Ub-specific processing proteases (R-HSA-5689880 )
RUNX2 regulates bone development (R-HSA-8941326 )
RUNX3 regulates CDKN1A transcription (R-HSA-8941855 )
RUNX3 regulates BCL2L11 (BIM) transcription (R-HSA-8952158 )
FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes (R-HSA-9615017 )
FOXO-mediated transcription of cell cycle genes (R-HSA-9617828 )
Cardiogenesis (R-HSA-9733709 )
SARS-CoV-1 targets host intracellular signalling and regulatory pathways (R-HSA-9735871 )
Germ layer formation at gastrulation (R-HSA-9754189 )
Formation of definitive endoderm (R-HSA-9823730 )
Signaling by NODAL (R-HSA-1181150 )

Molecular Interaction Atlas (MIA) of This DOT

47 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cognitive impairment DISH2ERD Definitive Biomarker [1]
Juvenile polyposis syndrome DISBPSLH Definitive Autosomal dominant [2]
Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome DISHDB84 Definitive Autosomal dominant [3]
Myhre syndrome DISE3L8A Definitive Autosomal dominant [3]
Brachydactyly DIS2533F Strong Biomarker [1]
Breast neoplasm DISNGJLM Strong Genetic Variation [4]
Carcinoma of esophagus DISS6G4D Strong Genetic Variation [4]
Chronic obstructive pulmonary disease DISQCIRF Strong Altered Expression [5]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [4]
Familial pancreatic carcinoma DIS1XROR Strong SusceptibilityMutation [6]
Gastric adenocarcinoma DISWWLTC Strong Biomarker [7]
Generalized juvenile polyposis/juvenile polyposis coli DISWA3FF Strong Autosomal dominant [8]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [9]
Hereditary diffuse gastric adenocarcinoma DISUIBYS Strong Biomarker [10]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Altered Expression [11]
Liver cancer DISDE4BI Strong Biomarker [12]
Lung adenocarcinoma DISD51WR Strong Genetic Variation [13]
Melanoma DIS1RRCY Strong Genetic Variation [14]
Myocardial infarction DIS655KI Strong Altered Expression [15]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [16]
Non-small-cell lung cancer DIS5Y6R9 Strong Genetic Variation [17]
Osteogenesis imperfecta DIS7XQSD Strong Biomarker [18]
Pancreatic adenocarcinoma DISKHX7S Strong Genetic Variation [4]
Patent ductus arteriosus DIS9P8YS Strong Genetic Variation [19]
Precocious puberty DISYI2XZ Strong Genetic Variation [20]
Prostate cancer DISF190Y Strong Biomarker [21]
Prostate carcinoma DISMJPLE Strong Biomarker [21]
Prostatitis DISL8OGN Strong Biomarker [22]
Pulmonary fibrosis DISQKVLA Strong Altered Expression [23]
Pulmonary hypertension DIS1RSP5 Strong Biomarker [24]
Telangiectasis DIS8WCAO Strong Genetic Variation [25]
Type-1/2 diabetes DISIUHAP Strong Biomarker [26]
Gastric cancer DISXGOUK moderate Genetic Variation [27]
Gastric neoplasm DISOKN4Y moderate Biomarker [10]
Heritable pulmonary arterial hypertension DISD1Y94 moderate Biomarker [28]
Myopathy DISOWG27 moderate Biomarker [29]
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Supportive Autosomal dominant [30]
Hereditary hemorrhagic telangiectasia DISXTDNT Supportive Autosomal dominant [31]
Lung cancer DISCM4YA Disputed Biomarker [32]
Pulmonary arterial hypertension DISP8ZX5 Disputed Autosomal dominant [3]
Anemia DISTVL0C Limited Genetic Variation [33]
Cataract DISUD7SL Limited Altered Expression [34]
Epithelial ovarian cancer DIS56MH2 Limited Altered Expression [35]
Invasive ductal breast carcinoma DIS43J58 Limited Altered Expression [36]
Ovarian cancer DISZJHAP Limited Altered Expression [35]
Pancreatic cancer DISJC981 Limited Biomarker [37]
Pancreatic tumour DIS3U0LK Limited Genetic Variation [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [39]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [40]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [41]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [42]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [43]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [44]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [45]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [47]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [48]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [49]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [50]
Ethanol DMDRQZU Approved Ethanol increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [51]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [52]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [49]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [53]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [54]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [55]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [41]
Glycyrrhizin DM8M2N3 Phase 3 Glycyrrhizin decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [56]
Piperlongumine DMIZCOE Preclinical Piperlongumine increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [58]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [59]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [60]
Glyphosate DM0AFY7 Investigative Glyphosate increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [61]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [62]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [63]
Galangin DM5TQ2O Investigative Galangin increases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [64]
ROLIPRAM DMJ03UM Investigative ROLIPRAM decreases the expression of Mothers against decapentaplegic homolog 4 (SMAD4). [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Mothers against decapentaplegic homolog 4 (SMAD4). [46]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Mothers against decapentaplegic homolog 4 (SMAD4). [57]
------------------------------------------------------------------------------------

References

1 Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2011 Dec 11;44(1):85-8. doi: 10.1038/ng.1016.
2 JP-HHT phenotype in Danish patients with SMAD4 mutations. Clin Genet. 2016 Jul;90(1):55-62. doi: 10.1111/cge.12693. Epub 2015 Dec 21.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity.Nat Biotechnol. 2016 Feb;34(2):155-63. doi: 10.1038/nbt.3391. Epub 2015 Nov 30.
5 miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss.J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):119-128. doi: 10.1002/jcsm.12236. Epub 2017 Oct 6.
6 Familial and sporadic pancreatic cancer share the same molecular pathogenesis.Fam Cancer. 2015 Mar;14(1):95-103. doi: 10.1007/s10689-014-9755-y.
7 Frequent loss of heterozygosity of SMAD4 locus and prognostic impacts of SMAD4 immunohistochemistry in gastric adenocarcinoma with enteroblastic differentiation.Hum Pathol. 2019 Jun;88:18-26. doi: 10.1016/j.humpath.2019.03.005. Epub 2019 Apr 1.
8 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
9 Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas.Mol Carcinog. 2019 May;58(5):666-673. doi: 10.1002/mc.22958. Epub 2019 Jan 16.
10 Genetic variations in the SMAD4 gene and gastric cancer susceptibility.World J Gastroenterol. 2010 Nov 28;16(44):5635-41. doi: 10.3748/wjg.v16.i44.5635.
11 Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma.HPB (Oxford). 2019 Feb;21(2):226-234. doi: 10.1016/j.hpb.2018.07.021. Epub 2018 Aug 28.
12 [Changes in TGF-beta1/Smads signaling pathway in rats with chemical hepatocarcinogenesis].Nan Fang Yi Ke Da Xue Xue Bao. 2008 Oct;28(10):1848-52.
13 SMAD4 Mutation in Small Cell Transformation of Epidermal Growth Factor Receptor Mutated Lung Adenocarcinoma.Oncologist. 2019 Jan;24(1):9-13. doi: 10.1634/theoncologist.2018-0016. Epub 2018 Nov 9.
14 SMAD signaling promotes melanoma metastasis independently of phenotype switching.J Clin Invest. 2019 Apr 30;129(7):2702-2716. doi: 10.1172/JCI94295.
15 Downregulated microRNA-224 aggravates vulnerable atherosclerotic plaques and vascular remodeling in acute coronary syndrome through activation of the TGF-/Smad pathway.J Cell Physiol. 2019 Mar;234(3):2537-2551. doi: 10.1002/jcp.26945. Epub 2018 Oct 14.
16 Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data.Genome Med. 2019 Mar 26;11(1):19. doi: 10.1186/s13073-019-0628-8.
17 Nomograms incorporating genetic variants in BMP/Smad4/Hamp pathway to predict disease outcomes after definitive radiotherapy for non-small cell lung cancer.Cancer Med. 2018 Jun;7(6):2247-2255. doi: 10.1002/cam4.1349. Epub 2018 May 9.
18 Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype.J Cell Sci. 2013 Nov 1;126(Pt 21):4974-84. doi: 10.1242/jcs.131953. Epub 2013 Sep 4.
19 Clinical study of genomic drivers in pancreatic ductal adenocarcinoma.Br J Cancer. 2017 Aug 8;117(4):572-582. doi: 10.1038/bjc.2017.209. Epub 2017 Jul 18.
20 The first two Chinese Myhre syndrome patients with the recurrent SMAD4 pathogenic variants: Functional consequences and clinical diversity.Clin Chim Acta. 2020 Jan;500:128-134. doi: 10.1016/j.cca.2019.10.006. Epub 2019 Oct 22.
21 miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF- Signaling.Mol Ther Nucleic Acids. 2019 Jun 7;16:91-104. doi: 10.1016/j.omtn.2019.01.004. Epub 2019 Jan 15.
22 [Expressions of transforming growth factor-beta(1) and Smad4 in rat models of chronic nonbacterial prostatitis and their clinical significance].Zhonghua Nan Ke Xue. 2010 Jun;16(6):490-4.
23 Effects of curcumin on artery blood gas index of rats with pulmonary fibrosis caused by paraquat poisoning and the expression of Smad 4, Smurf 2, interleukin-4 and interferon-.Exp Ther Med. 2019 May;17(5):3664-3670. doi: 10.3892/etm.2019.7341. Epub 2019 Mar 4.
24 Smad signaling in the rat model of monocrotaline pulmonary hypertension.Toxicol Pathol. 2008 Feb;36(2):311-20. doi: 10.1177/0192623307311402. Epub 2008 Mar 26.
25 SMAD4 mutations found in unselected HHT patients.J Med Genet. 2006 Oct;43(10):793-7. doi: 10.1136/jmg.2006.041517. Epub 2006 Apr 13.
26 Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.Immunol Cell Biol. 2017 Mar;95(3):287-296. doi: 10.1038/icb.2016.98. Epub 2016 Sep 30.
27 Gastric cancer and paraneoplastic dermatomyositis as complications of an unrecognized juvenile polyposis syndrome.Z Gastroenterol. 2019 Apr;57(4):497-500. doi: 10.1055/a-0855-4404. Epub 2019 Mar 14.
28 Identification of rare sequence variation underlying heritable pulmonary arterial hypertension.Nat Commun. 2018 Apr 12;9(1):1416. doi: 10.1038/s41467-018-03672-4.
29 Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2.BMC Biol. 2017 Nov 28;15(1):112. doi: 10.1186/s12915-017-0452-9.
30 SMAD4 rare variants in individuals and families with thoracic aortic aneurysms and dissections. Eur J Hum Genet. 2019 Jul;27(7):1054-1060. doi: 10.1038/s41431-019-0357-x. Epub 2019 Feb 26.
31 Hereditary Hemorrhagic Telangiectasia. 2000 Jun 26 [updated 2021 Nov 24]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
32 Long noncoding RNA00887 reduces the invasion and metastasis of nonsmall cell lung cancer by causing the degradation of miRNAs.Oncol Rep. 2019 Sep;42(3):1173-1182. doi: 10.3892/or.2019.7228. Epub 2019 Jul 11.
33 Juvenile polyposis, hereditary hemorrhagic telangiectasia, and early onset colorectal cancer in patients with SMAD4 mutation.J Gastroenterol. 2012 Jul;47(7):795-804. doi: 10.1007/s00535-012-0545-8. Epub 2012 Feb 14.
34 Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelialmesenchymal transition by regulation of SMAD4 expression in lens epithelial cells.Mol Med Rep. 2018 Jul;18(1):16-24. doi: 10.3892/mmr.2018.8987. Epub 2018 May 8.
35 Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis.Int J Oncol. 2017 May;50(5):1693-1700. doi: 10.3892/ijo.2017.3957. Epub 2017 Apr 7.
36 Molecular Characteristics of Pancreatic Ductal Adenocarcinomas with High-Grade Pancreatic Intraepithelial Neoplasia (PanIN) Are Different from Those without High-Grade PanIN.Pathobiology. 2017;84(4):192-201. doi: 10.1159/000455194. Epub 2017 Mar 15.
37 TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status.Autophagy. 2020 Mar;16(3):486-500. doi: 10.1080/15548627.2019.1628540. Epub 2019 Jun 17.
38 Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression.Nat Med. 2016 May;22(5):497-505. doi: 10.1038/nm.4082. Epub 2016 Apr 18.
39 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
40 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
41 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
42 Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples. Data Brief. 2016 Mar 26;7:1052-1057. doi: 10.1016/j.dib.2016.03.069. eCollection 2016 Jun.
43 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
44 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
45 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
46 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
47 Suppression of transforming growth factor beta/smad signaling in keloid-derived fibroblasts by quercetin: implications for the treatment of excessive scars. J Trauma. 2004 Nov;57(5):1032-7. doi: 10.1097/01.ta.0000114087.46566.eb.
48 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
49 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
50 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
51 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
52 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
53 Ouabain impairs cell migration, and invasion and alters gene expression of human osteosarcoma U-2 OS cells. Environ Toxicol. 2017 Nov;32(11):2400-2413. doi: 10.1002/tox.22453. Epub 2017 Aug 10.
54 [Effect of dihydrotestosterone on the transcriptions and expressions of Smad3 and Smad4 in LNCaP cell line]. Zhonghua Nan Ke Xue. 2006 Mar;12(3):211-4.
55 Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007 Dec 15;67(24):12007-17. doi: 10.1158/0008-5472.CAN-07-2464.
56 Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF- pathway. Environ Toxicol. 2021 Jun;36(6):1080-1089. doi: 10.1002/tox.23107. Epub 2021 Feb 1.
57 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
58 Piperlongumine induces ROS mediated apoptosis by transcriptional regulation of SMAD4/P21/P53 genes and synergizes with doxorubicin in osteosarcoma cells. Chem Biol Interact. 2022 Feb 25;354:109832. doi: 10.1016/j.cbi.2022.109832. Epub 2022 Jan 24.
59 Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett. 2021 Feb;21(2):101. doi: 10.3892/ol.2020.12362. Epub 2020 Dec 8.
60 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
61 Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Hum Exp Toxicol. 2007 Sep;26(9):747-52. doi: 10.1177/0960327107083453.
62 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
63 Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp Biol Med (Maywood). 2011 Apr 1;236(4):435-44. doi: 10.1258/ebm.2010.010325. Epub 2011 Mar 2.
64 Galangin suppresses HepG2 cell proliferation by activating the TGF- receptor/Smad pathway. Toxicology. 2014 Dec 4;326:9-17. doi: 10.1016/j.tox.2014.09.010. Epub 2014 Sep 28.
65 Rolipram suppresses migration and invasion of human choriocarcinoma cells by inhibiting phosphodiesterase 4-mediated epithelial-mesenchymal transition. J Biochem Mol Toxicol. 2023 Jul;37(7):e23363. doi: 10.1002/jbt.23363. Epub 2023 Apr 5.