General Information of Drug Combination (ID: DCIW0MI)

Drug Combination Name
Chloroquine Imatinib
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Chloroquine   DMSI5CB Imatinib   DM7RJXL
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 7.99
Bliss Independence Score: 7.99
Loewe Additivity Score: 9.33
LHighest Single Agent (HSA) Score: 9.34

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Chloroquine
Disease Entry ICD 11 Status REF
Malaria 1F40-1F45 Approved [2]
Plasmodium falciparum malaria 1F40 Approved [3]
Plasmodium malariae malaria N.A. Approved [3]
Plasmodium ovale malaria N.A. Approved [3]
Systemic lupus erythematosus 4A40.0 Approved [3]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [4]
Middle East Respiratory Syndrome (MERS) 1D64 Investigative [5]
Severe acute respiratory syndrome (SARS) 1D65 Investigative [6]
Chloroquine Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
HUMAN pH-dependent viral fusion/replication (pH-DVF/R) TTD16BI N.A. Inhibitor [13]
HUMAN glycosylation of host receptor (GHR) TTZGK1R N.A. Inhibitor [13]
Duffy antigen chemokine receptor (ACKR1) TTKY2NS ACKR1_HUMAN Modulator [14]
------------------------------------------------------------------------------------
Chloroquine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [15]
Multidrug and toxin extrusion protein 1 (SLC47A1) DTZGT0P S47A1_HUMAN Substrate [16]
------------------------------------------------------------------------------------
Chloroquine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [17]
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [18]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [19]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [17]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [20]
------------------------------------------------------------------------------------
Chloroquine Interacts with 77 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [21]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Decreases Activity [18]
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [22]
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) OT9RDS3H IKKB_HUMAN Decreases Expression [23]
Inhibitor of nuclear factor kappa-B kinase subunit alpha (CHUK) OTLF4ZB1 IKKA_HUMAN Decreases Expression [23]
Trans-Golgi network integral membrane protein 2 (TGOLN2) OTM647IV TGON2_HUMAN Affects Localization [24]
Claudin-1 (CLDN1) OT27KV99 CLD1_HUMAN Increases Expression [25]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [26]
Metalloproteinase inhibitor 1 (TIMP1) OTOXC51H TIMP1_HUMAN Decreases Expression [27]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Decreases Expression [28]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [29]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Decreases Expression [30]
Ferritin heavy chain (FTH1) OT6IFS0O FRIH_HUMAN Increases Expression [27]
Receptor tyrosine-protein kinase erbB-2 (ERBB2) OTOAUNCK ERBB2_HUMAN Decreases Expression [26]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Activity [31]
Sodium/potassium-transporting ATPase subunit alpha-1 (ATP1A1) OTCJ458Q AT1A1_HUMAN Increases Expression [32]
Apolipoprotein D (APOD) OTT77XW8 APOD_HUMAN Affects Localization [33]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [28]
Cathepsin B (CTSB) OTP9G5QB CATB_HUMAN Decreases Activity [34]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Expression [22]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Expression [35]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [36]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [29]
C-C motif chemokine 2 (CCL2) OTAD2HEL CCL2_HUMAN Increases Expression [29]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Decreases Expression [35]
Glutamine synthetase (GLUL) OTYGTCGF GLNA_HUMAN Decreases Expression [37]
CCAAT/enhancer-binding protein beta (CEBPB) OTM9MQIA CEBPB_HUMAN Increases Expression [38]
Nuclear factor NF-kappa-B p105 subunit (NFKB1) OTNRRD8I NFKB1_HUMAN Decreases Expression [23]
Cation-dependent mannose-6-phosphate receptor (M6PR) OTFEWOSB MPRD_HUMAN Affects Localization [24]
Receptor tyrosine-protein kinase erbB-3 (ERBB3) OTRSST0A ERBB3_HUMAN Decreases Expression [26]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [39]
Calreticulin (CALR) OTYD2TR1 CALR_HUMAN Increases Expression [38]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [39]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [40]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Decreases Expression [22]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [38]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [41]
Aquaporin-2 (AQP2) OTQLBKK6 AQP2_HUMAN Decreases Expression [42]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [43]
Collagenase 3 (MMP13) OTY8BZIE MMP13_HUMAN Increases Expression [35]
Coatomer subunit delta (ARCN1) OTJ96STE COPD_HUMAN Affects Localization [24]
Eotaxin (CCL11) OT3BIFPK CCL11_HUMAN Decreases Secretion [44]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Increases Expression [45]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [43]
Gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) OTS7YVHF GBRL2_HUMAN Increases Expression [37]
Interleukin-2 (IL2) OTGI4NSA IL2_HUMAN Decreases Expression [46]
Rho-related GTP-binding protein RhoB (RHOB) OTHQFQF7 RHOB_HUMAN Increases Expression [37]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Expression [23]
Recombining binding protein suppressor of hairless (RBPJ) OTD7CUG0 SUH_HUMAN Increases Expression [47]
Lymphotoxin-beta (LTB) OTUFS8CF TNFC_HUMAN Increases Expression [29]
Golgin subfamily A member 2 (GOLGA2) OT5S9KYM GOGA2_HUMAN Affects Localization [24]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [48]
Serine-protein kinase ATM (ATM) OTQVOHLT ATM_HUMAN Increases Phosphorylation [49]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Increases Expression [50]
Solute carrier family 12 member 1 (SLC12A1) OT6YSX0G S12A1_HUMAN Decreases Expression [42]
Nuclear receptor coactivator 4 (NCOA4) OTRVU0UA NCOA4_HUMAN Increases Expression [27]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Decreases Expression [51]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [22]
Early endosome antigen 1 (EEA1) OTIBXC1B EEA1_HUMAN Affects Localization [24]
Occludin (OCLN) OTSUTVWL OCLN_HUMAN Increases Expression [25]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [39]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Decreases Expression [22]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [38]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Expression [52]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [34]
Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) OTPMGIU4 MLP3A_HUMAN Increases Expression [53]
Toll-like receptor 9 (TLR9) OTFZ45HX TLR9_HUMAN Increases Expression [35]
Toll-like receptor 8 (TLR8) OTEJRL9C TLR8_HUMAN Decreases Activity [54]
NAD-dependent protein deacetylase sirtuin-3, mitochondrial (SIRT3) OTMEF544 SIR3_HUMAN Increases Stability [55]
Toll-like receptor 7 (TLR7) OT3HZV7Z TLR7_HUMAN Decreases Activity [54]
Programmed cell death 1 ligand 1 (CD274) OTJ0VFDL PD1L1_HUMAN Decreases Expression [22]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Expression [22]
NF-kappa-B essential modulator (IKBKG) OTNWJWSD NEMO_HUMAN Decreases Expression [23]
Solute carrier organic anion transporter family member 1B1 (SLCO1B1) OTNEN8QK SO1B1_HUMAN Affects Localization [32]
Porphobilinogen deaminase (HMBS) OT3P47DC HEM3_HUMAN Increases Response To Substance [56]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Increases Metabolism [57]
Linker for activation of T-cells family member 2 (LAT2) OTWJDKIH NTAL_HUMAN Increases Response To Substance [58]
------------------------------------------------------------------------------------
⏷ Show the Full List of 77 DOT(s)
Indication(s) of Imatinib
Disease Entry ICD 11 Status REF
Acute lymphoblastic leukaemia 2A85 Approved [7]
Blast phase chronic myelogenous leukemia, BCR-ABL1 positive N.A. Approved [8]
Choroidal neovascularization 9B76 Approved [8]
Chronic eosinophilic leukemia N.A. Approved [8]
Chronic myelogenous leukaemia 2A20.0 Approved [9]
Chronic myeloid leukaemia 2A20 Approved [10]
Dermatofibrosarcoma protuberans N.A. Approved [8]
Gastrointestinal stromal tumour 2B5B Approved [8]
Leukemia N.A. Approved [8]
Malignant peripheral nerve sheath tumor N.A. Approved [8]
Myeloproliferative neoplasm 2A20 Approved [8]
Pulmonary hypertension BB01 Approved [8]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [11]
Intestinal cancer 2C0Z Phase 3 [9]
Lung cancer 2C25.0 Phase 2 [9]
Idiopathic hypereosinophilic syndrome N.A. Investigative [8]
Middle East Respiratory Syndrome (MERS) 1D64 Investigative [5]
Scleroderma 4A42 Investigative [8]
Severe acute respiratory syndrome (SARS) 1D65 Investigative [5]
Systemic mastocytosis 2A21.0 Investigative [12]
Imatinib Interacts with 5 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Mcl-1 messenger RNA (MCL-1 mRNA) TTN6ORK MCL1_HUMAN . [12]
Fusion protein Bcr-Abl (Bcr-Abl) TTS7G69 BCR_HUMAN-ABL1_HUMAN Inhibitor [62]
Platelet-derived growth factor receptor (PDGFR) TTI2WET NOUNIPROTAC Inhibitor [62]
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Inhibitor [62]
HUMAN fusion protein Bcr-Abl (Bcr-Abl) TTE63HY BCR_HUMAN/ABL1_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
Imatinib Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [63]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [64]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [65]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [66]
Organic anion transporting polypeptide 1A2 (SLCO1A2) DTE2B1D SO1A2_HUMAN Substrate [67]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Imatinib Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [68]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [69]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [70]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [71]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [72]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [73]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [74]
Prostaglandin G/H synthase 1 (COX-1) DE073H6 PGH1_HUMAN Metabolism [70]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Imatinib Interacts with 95 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Methylation [75]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [75]
Cytochrome P450 3A7 (CYP3A7) OTTCDHHM CP3A7_HUMAN Decreases Methylation [75]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Methylation [75]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Increases Expression [76]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [76]
Aldehyde dehydrogenase, mitochondrial (ALDH2) OTKJ9I3N ALDH2_HUMAN Decreases Expression [77]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Expression [77]
Fructose-bisphosphate aldolase C (ALDOC) OTEC13I5 ALDOC_HUMAN Decreases Expression [77]
Pyruvate dehydrogenase E1 component subunit beta, mitochondrial (PDHB) OT2NHE5E ODPB_HUMAN Decreases Expression [77]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [77]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [77]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Expression [77]
Eukaryotic translation initiation factor 4B (EIF4B) OTE8TXA8 IF4B_HUMAN Decreases Expression [77]
Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) OT5BZ1J9 P85A_HUMAN Decreases Expression [77]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [77]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [77]
Hexokinase-4 (GCK) OTR3Q0NN HXK4_HUMAN Decreases Expression [77]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [77]
Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform (PPP2CA) OT83PT85 PP2AA_HUMAN Increases Expression [77]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Expression [77]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [78]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Decreases Expression [79]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [80]
Autophagy-related protein 13 (ATG13) OTYMHNEJ ATG13_HUMAN Increases Phosphorylation [59]
Platelet-derived growth factor subunit B (PDGFB) OTMFMFC3 PDGFB_HUMAN Decreases Expression [81]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Expression [82]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [83]
Keratin, type I cytoskeletal 14 (KRT14) OTUVZ1DW K1C14_HUMAN Increases Expression [84]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [85]
Heat shock protein beta-1 (HSPB1) OTHFZ8ED HSPB1_HUMAN Increases Expression [80]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [86]
Intercellular adhesion molecule 1 (ICAM1) OTTOIX77 ICAM1_HUMAN Increases Expression [80]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [87]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Decreases Expression [82]
Cathepsin B (CTSB) OTP9G5QB CATB_HUMAN Increases Expression [59]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Phosphorylation [88]
ATP-dependent 6-phosphofructokinase, muscle type (PFKM) OT1QY9JM PFKAM_HUMAN Decreases Expression [89]
Platelet-derived growth factor receptor beta (PDGFRB) OTYSNK9Q PGFRB_HUMAN Decreases Expression [81]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [90]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [80]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [91]
Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) OTA675TJ GTR1_HUMAN Decreases Expression [85]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [61]
Lysosome-associated membrane glycoprotein 1 (LAMP1) OTYE92QY LAMP1_HUMAN Increases Expression [59]
Ornithine decarboxylase (ODC1) OTNDAGRR DCOR_HUMAN Increases Expression [80]
Keratin, type II cytoskeletal 5 (KRT5) OTVGI9HT K2C5_HUMAN Increases Expression [84]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [92]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Expression [93]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Expression [81]
CCAAT/enhancer-binding protein beta (CEBPB) OTM9MQIA CEBPB_HUMAN Increases Expression [80]
Histidine decarboxylase (HDC) OT4WA5YQ DCHS_HUMAN Decreases Expression [94]
Transcription factor EB (TFEB) OTJUJJQY TFEB_HUMAN Affects Localization [59]
Fibroblast growth factor receptor 3 (FGFR3) OTSAXDIL FGFR3_HUMAN Decreases Expression [95]
Insulin-like growth factor-binding protein 4 (IGFBP4) OT2HZRBD IBP4_HUMAN Increases Expression [80]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [96]
Interleukin-4 receptor subunit alpha (IL4R) OTTXOTCW IL4RA_HUMAN Increases Expression [80]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [82]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Phosphorylation [80]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [87]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [87]
Caspase-1 (CASP1) OTZ3YQFU CASP1_HUMAN Increases Cleavage [83]
Catenin beta-1 (CTNNB1) OTZ932A3 CTNB1_HUMAN Decreases Expression [97]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [98]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [99]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [59]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Decreases Expression [89]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [59]
Heat shock factor protein 1 (HSF1) OTYNJ4KP HSF1_HUMAN Increases Expression [80]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Expression [97]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [91]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [100]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [90]
Forkhead box protein M1 (FOXM1) OT5887KR FOXM1_HUMAN Decreases Expression [97]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [101]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Increases Expression [59]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Increases Expression [59]
Nuclear receptor subfamily 0 group B member 2 (NR0B2) OT7UVICX NR0B2_HUMAN Increases Expression [102]
NGFI-A-binding protein 2 (NAB2) OTG4BDF3 NAB2_HUMAN Increases Expression [80]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Decreases Expression [103]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [86]
TRAF family member-associated NF-kappa-B activator (TANK) OTZSGFIK TANK_HUMAN Increases Expression [80]
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) OTZM6MHU NLRP3_HUMAN Increases Expression [83]
Bile acid receptor (NR1H4) OTWZLPTB NR1H4_HUMAN Increases Activity [102]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [104]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Expression [59]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [105]
V-type proton ATPase subunit H (ATP6V1H) OTX17GQ9 VATH_HUMAN Increases Expression [59]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Increases Response To Substance [106]
LYR motif-containing protein 9 (LYRM9) OT1MILTK LYRM9_HUMAN Affects Response To Substance [107]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [108]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Response To Substance [109]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Response To Substance [110]
Tyrosine-protein kinase Lyn (LYN) OTP686K2 LYN_HUMAN Decreases Response To Substance [99]
Serine/threonine-protein kinase PLK1 (PLK1) OTRZX45T PLK1_HUMAN Increases Response To Substance [90]
------------------------------------------------------------------------------------
⏷ Show the Full List of 95 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5535).
3 Chloroquine FDA Label
4 ClinicalTrials.gov (NCT04360759) Chloroquine Outpatient Treatment Evaluation for HIV-Covid-19. U.S. National Institutes of Health.
5 Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016 May;15(5):327-47.
6 Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020 Mar;19(3):149-150.
7 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
8 Imatinib FDA Label
9 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5687).
10 FDA Approved Drug Products from FDA Official Website. 2019. Application Number: (ANDA) 078340.
11 ClinicalTrials.gov (NCT04356495) Treatments to Decrease the Risk of Hospitalization or Death in Elderly Outpatients With Symptomatic SARS-CoV-2 Infection (COVID-19). U.S. National Institutes of Health.
12 Design and development of antisense drugs. Expert Opin. Drug Discov. 2008 3(10):1189-1207.
13 Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271.
14 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
15 Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev. 2012 Jan;64(1):95-109.
16 Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine. Antimicrob Agents Chemother. 2011 Jul;55(7):3091-8.
17 Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003 Aug;26(8):631-7.
18 In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003 Jun;31(6):748-54.
19 Halofantrine and chloroquine inhibit CYP2D6 activity in healthy Zambians. Br J Clin Pharmacol. 1998 Mar;45(3):315-7.
20 Short communication: high prevalence of the cytochrome P450 2C8*2 mutation in Northern Ghana. Trop Med Int Health. 2005 Dec;10(12):1271-3.
21 Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos. 2001 Jan;29(1):30-5.
22 Autophagy inhibition upregulates CD4(+) tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol Oncol. 2016 Dec;10(10):1516-1531. doi: 10.1016/j.molonc.2016.08.005. Epub 2016 Sep 16.
23 Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes. Biochem Biophys Res Commun. 2015 Aug 14;464(1):221-228. doi: 10.1016/j.bbrc.2015.06.120. Epub 2015 Jun 23.
24 Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435-1455. doi: 10.1080/15548627.2018.1474314. Epub 2018 Jul 20.
25 Chloroquine and Hydroxychloroquine Increase Retinal Pigment Epithelial Layer Permeability. J Biochem Mol Toxicol. 2015 Jul;29(7):299-304. doi: 10.1002/jbt.21696. Epub 2015 Mar 9.
26 Sulindac metabolites induce proteosomal and lysosomal degradation of the epidermal growth factor receptor. Cancer Prev Res (Phila). 2010 Apr;3(4):560-72. doi: 10.1158/1940-6207.CAPR-09-0159. Epub 2010 Mar 23.
27 Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019 Jan;109:2043-2053. doi: 10.1016/j.biopha.2018.11.030. Epub 2018 Nov 26.
28 Calcitriol-mediated hypercalcaemia and increased interleukins in a patient with sarcoid myopathy. Clin Rheumatol. 1999;18(6):488-91. doi: 10.1007/s100670050144.
29 Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia. 2004 Jul;47(1):9-20. doi: 10.1002/glia.20017.
30 Profiling the immunotoxicity of chemicals based on in vitro evaluation by a combination of the Multi-ImmunoTox assay and the IL-8 Luc assay. Arch Toxicol. 2018 Jun;92(6):2043-2054. doi: 10.1007/s00204-018-2199-7. Epub 2018 Mar 29.
31 High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis. 2002 Jun;23(6):949-57. doi: 10.1093/carcin/23.6.949.
32 Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharm. 2016 Mar 7;13(3):839-51. doi: 10.1021/acs.molpharmaceut.5b00763. Epub 2016 Feb 1.
33 Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet. 2017 Feb 9;13(2):e1006603. doi: 10.1371/journal.pgen.1006603. eCollection 2017 Feb.
34 Chloroquine aggravates the arsenic trioxide (As2O3)-induced apoptosis of acute promyelocytic leukemia NB4 cells via inhibiting lysosomal degradation in vitro. Eur Rev Med Pharmacol Sci. 2018 Oct;22(19):6412-6421. doi: 10.26355/eurrev_201810_16054.
35 Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer. Oncol Lett. 2013 Dec;6(6):1665-1672. doi: 10.3892/ol.2013.1602. Epub 2013 Oct 4.
36 NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis. 2017 Sep 14;8(9):e3048. doi: 10.1038/cddis.2017.438.
37 Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods. 2023 Jun;33(5):401-410. doi: 10.1080/15376516.2022.2156005. Epub 2022 Dec 19.
38 Increasing intratumor C/EBP- LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer. J Exp Clin Cancer Res. 2018 Nov 27;37(1):286. doi: 10.1186/s13046-018-0967-0.
39 Inhibition of autophagic flux differently modulates cannabidiol-induced death in 2D and 3D glioblastoma cell cultures. Sci Rep. 2020 Feb 14;10(1):2687. doi: 10.1038/s41598-020-59468-4.
40 Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2015 Mar;35(3):1063-76. doi: 10.1111/liv.12626. Epub 2014 Jul 30.
41 Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents. Breast Cancer Res Treat. 2002 Sep;75(2):107-17. doi: 10.1023/a:1019698807564.
42 Chronic use of chloroquine disrupts the urine concentration mechanism by lowering cAMP levels in the inner medulla. Am J Physiol Renal Physiol. 2012 Sep 15;303(6):F900-5. doi: 10.1152/ajprenal.00547.2011. Epub 2012 Jul 11.
43 The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer. 2013 Jun 1;132(11):2682-93. doi: 10.1002/ijc.27935. Epub 2012 Dec 4.
44 Paradoxical Effect of Chloroquine Treatment in Enhancing Chikungunya Virus Infection. Viruses. 2018 May 17;10(5):268. doi: 10.3390/v10050268.
45 Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca(2+) homeostasis. Chem Biol Interact. 2021 Oct 1;348:109649. doi: 10.1016/j.cbi.2021.109649. Epub 2021 Sep 10.
46 Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol. 1995 Oct;102(1):144-51. doi: 10.1111/j.1365-2249.1995.tb06648.x.
47 Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase. J Cell Sci. 2012 Mar 1;125(Pt 5):1296-308. doi: 10.1242/jcs.095984. Epub 2012 Feb 2.
48 Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene. 2016 Aug 25;35(34):4518-28. doi: 10.1038/onc.2015.511. Epub 2016 Feb 8.
49 Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammary carcinogenesis. Cancer Res. 2007 Dec 15;67(24):12026-33. doi: 10.1158/0008-5472.CAN-07-3058.
50 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
51 Antitumor activity of chloroquine in combination with Cisplatin in human gastric cancer xenografts. Asian Pac J Cancer Prev. 2015;16(9):3907-12. doi: 10.7314/apjcp.2015.16.9.3907.
52 Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol. 2013 Dec;183(6):1815-1825. doi: 10.1016/j.ajpath.2013.08.011. Epub 2013 Oct 1.
53 Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate. 2019 Feb;79(2):140-150. doi: 10.1002/pros.23719. Epub 2018 Oct 2.
54 HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses. Sci Rep. 2016 Jul 7;6:29447. doi: 10.1038/srep29447.
55 Effects of SIDT2 on the miR-25/NOX4/HuR axis and SIRT3 mRNA stability lead to ROS-mediated TNF- expression in hydroquinone-treated leukemia cells. Cell Biol Toxicol. 2023 Oct;39(5):2207-2225. doi: 10.1007/s10565-022-09705-5. Epub 2022 Mar 18.
56 Precipitation of acute intermittent porphyria by chloroquin. Indian Pediatr. 1996 Mar;33(3):241-3.
57 CYP2C8 and antimalaria drug efficacy. Pharmacogenomics. 2007 Feb;8(2):187-98. doi: 10.2217/14622416.8.2.187.
58 NTAL is associated with treatment outcome, cell proliferation and differentiation in acute promyelocytic leukemia. Sci Rep. 2020 Jun 25;10(1):10315. doi: 10.1038/s41598-020-66223-2.
59 Imatinib disturbs lysosomal function and morphology and impairs the activity of mTORC1 in human hepatocyte cell lines. Food Chem Toxicol. 2022 Apr;162:112869. doi: 10.1016/j.fct.2022.112869. Epub 2022 Feb 16.
60 Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3532-40. doi: 10.1158/1078-0432.CCR-05-1778.
61 Sensitivity to imatinib therapy may be predicted by testing Wilms tumor gene expression and colony growth after a short in vitro incubation. Cancer. 2004 Sep 1;101(5):979-88. doi: 10.1002/cncr.20457.
62 A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem. 2007;7(14):1408-22.
63 Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit. 2011 Apr;33(2):244-50.
64 Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004 Nov 1;104(9):2940-2.
65 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
66 Pharmacologic markers and predictors of responses to imatinib therapy in patients with chronic myeloid leukemia. Leuk Lymphoma. 2008 Apr;49(4):639-42.
67 Environmental and genetic factors affecting transport of imatinib by OATP1A2. Clin Pharmacol Ther. 2011 Jun;89(6):816-20.
68 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
69 The effect of apigenin on pharmacokinetics of imatinib and its metabolite N-desmethyl imatinib in rats. Biomed Res Int. 2013;2013:789184.
70 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
71 Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879-94.
72 Drug Interactions Flockhart Table
73 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
74 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
75 Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br J Pharmacol. 2010 Nov;161(5):1059-69. doi: 10.1111/j.1476-5381.2010.00946.x.
76 Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther. 2005 Jul;4(7):747-52.
77 A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3378-83.
78 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
79 Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-B inactivation. Toxicol In Vitro. 2012 Apr;26(3):396-405.
80 Effects of Imatinib Mesylate (Gleevec) on human islet NF-kappaB activation and chemokine production in vitro. PLoS One. 2011;6(9):e24831. doi: 10.1371/journal.pone.0024831. Epub 2011 Sep 14.
81 Chemosensitization by STI571 targeting the platelet-derived growth factor/platelet-derived growth factor receptor-signaling pathway in the tumor progression and angiogenesis of gastric carcinoma. Cancer. 2005 May 1;103(9):1800-9. doi: 10.1002/cncr.20973.
82 Imatinib mesylate, a new kid on the block for the treatment of anti-neutrophil cytoplasmic autoantibodies-associated vasculitis?. Clin Exp Immunol. 2008 Mar;151(3):391-8. doi: 10.1111/j.1365-2249.2007.03572.x. Epub 2008 Jan 10.
83 Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol. 2022 Apr;96(4):1075-1087. doi: 10.1007/s00204-022-03245-x. Epub 2022 Feb 22.
84 Oral lichenoid eruption secondary to imatinib (Glivec). J Dermatolog Treat. 2004 Jul;15(4):253-5. doi: 10.1080/09546630410015556.
85 AMP-activated protein kinase activation primes cytoplasmic translocation and autophagic degradation of the BCR-ABL protein in CML cells. Cancer Sci. 2021 Jan;112(1):194-204. doi: 10.1111/cas.14698. Epub 2020 Nov 16.
86 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
87 Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood. 2004 Aug 15;104(4):1094-9. doi: 10.1182/blood-2003-12-4266. Epub 2004 Apr 20.
88 Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res. 2005 Feb 1;11(3):1336-41.
89 Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells. Chem Biol Interact. 2015 May 25;233:147-56. doi: 10.1016/j.cbi.2015.03.028. Epub 2015 Apr 8.
90 Efficacy of the polo-like kinase inhibitor rigosertib, alone or in combination with Abelson tyrosine kinase inhibitors, against break point cluster region-c-Abelson-positive leukemia cells. Oncotarget. 2015 Aug 21;6(24):20231-40. doi: 10.18632/oncotarget.4047.
91 Saikosaponin D disrupts platelet-derived growth factor- receptor/p38 pathway leading to mitochondrial apoptosis in human LO2 hepatocyte cells: a potential mechanism of hepatotoxicity. Chem Biol Interact. 2013 Oct 25;206(1):76-82. doi: 10.1016/j.cbi.2013.08.006. Epub 2013 Aug 28.
92 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
93 Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells. Cancer Res. 2010 Jan 1;70(1):150-9. doi: 10.1158/0008-5472.CAN-09-1449. Epub 2009 Dec 22.
94 The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood. 2006 Nov 15;108(10):3538-47. doi: 10.1182/blood-2005-12-028456. Epub 2006 Jul 18.
95 Increased expression of fibroblast growth factor receptor 3 in CD34+ BCR-ABL+ cells from patients with chronic myeloid leukemia. Leukemia. 2003 Dec;17(12):2418-25. doi: 10.1038/sj.leu.2403152.
96 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
97 Anthelmintic Niclosamide Disrupts the Interplay of p65 and FOXM1/-catenin and Eradicates Leukemia Stem Cells in Chronic Myelogenous Leukemia. Clin Cancer Res. 2017 Feb 1;23(3):789-803. doi: 10.1158/1078-0432.CCR-16-0226. Epub 2016 Aug 4.
98 In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol. 2002 Jul;30(7):729-37. doi: 10.1016/s0301-472x(02)00836-6.
99 Establishment and characterization of a novel imatinib-sensitive chronic myeloid leukemia cell line MYL, and an imatinib-resistant subline MYL-R showing overexpression of Lyn. Eur J Haematol. 2007 May;78(5):417-31. doi: 10.1111/j.1600-0609.2007.00835.x.
100 The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Mol Pharmacol. 2001 Mar;59(3):453-61. doi: 10.1124/mol.59.3.453.
101 Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicol Lett. 2022 Jul 15;365:11-23. doi: 10.1016/j.toxlet.2022.06.001. Epub 2022 Jun 6.
102 Investigation of imatinib and other approved drugs as starting points for antidiabetic drug discovery with FXR modulating activity. Biochem Pharmacol. 2012 Jun 15;83(12):1674-81. doi: 10.1016/j.bcp.2012.02.027. Epub 2012 Mar 7.
103 A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. Toxicol Lett. 2022 Jun 15;363:11-26. doi: 10.1016/j.toxlet.2022.05.002. Epub 2022 May 18.
104 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
105 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
106 Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib. Clin Chem. 2004 Jul;50(7):1205-13. doi: 10.1373/clinchem.2004.031112. Epub 2004 Apr 23.
107 Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol Sci. 2016 May;151(1):10-22. doi: 10.1093/toxsci/kfw032. Epub 2016 Mar 22.
108 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
109 Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res. 2005 Sep 15;65(18):8224-32. doi: 10.1158/0008-5472.CAN-05-0303.
110 Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur J Cancer. 2009 Jul;45(10):1877-89. doi: 10.1016/j.ejca.2009.04.005. Epub 2009 May 4.