General Information of Drug Off-Target (DOT) (ID: OTQLSVBS)

DOT Name PR domain zinc finger protein 1 (PRDM1)
Synonyms EC 2.1.1.-; BLIMP-1; Beta-interferon gene positive regulatory domain I-binding factor; PR domain-containing protein 1; Positive regulatory domain I-binding factor 1; PRDI-BF1; PRDI-binding factor 1
Gene Name PRDM1
Related Disease
Classic Hodgkin lymphoma ( )
Lung cancer ( )
Acute myelogenous leukaemia ( )
Adult lymphoma ( )
AIDS-related lymphoma ( )
Arteriosclerosis ( )
Atherosclerosis ( )
B-cell neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Carcinoma ( )
Cervical cancer ( )
Colon cancer ( )
Colon carcinoma ( )
Crohn disease ( )
Extranodal NK/T-cell Lymphoma ( )
Glioma ( )
Hepatitis B virus infection ( )
Inflammatory bowel disease ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Lung carcinoma ( )
Lupus ( )
Lymphoma ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Pancreatic cancer ( )
Pediatric lymphoma ( )
Plasma cell myeloma ( )
Retinoblastoma ( )
Sjogren syndrome ( )
Small lymphocytic lymphoma ( )
Systemic lupus erythematosus ( )
Ulcerative colitis ( )
Hepatocellular carcinoma ( )
Influenza ( )
Ankylosing spondylitis ( )
Colitis ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Squamous cell carcinoma ( )
UniProt ID
PRDM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3DAL
EC Number
2.1.1.-
Pfam ID
PF21549 ; PF00096
Sequence
MLDICLEKRVGTTLAAPKCNSSTVRFQGLAEGTKGTMKMDMEDADMTLWTEAEFEEKCTY
IVNDHPWDSGADGGTSVQAEASLPRNLLFKYATNSEEVIGVMSKEYIPKGTRFGPLIGEI
YTNDTVPKNANRKYFWRIYSRGELHHFIDGFNEEKSNWMRYVNPAHSPREQNLAACQNGM
NIYFYTIKPIPANQELLVWYCRDFAERLHYPYPGELTMMNLTQTQSSLKQPSTEKNELCP
KNVPKREYSVKEILKLDSNPSKGKDLYRSNISPLTSEKDLDDFRRRGSPEMPFYPRVVYP
IRAPLPEDFLKASLAYGIERPTYITRSPIPSSTTPSPSARSSPDQSLKSSSPHSSPGNTV
SPVGPGSQEHRDSYAYLNASYGTEGLGSYPGYAPLPHLPPAFIPSYNAHYPKFLLPPYGM
NCNGLSAVSSMNGINNFGLFPRLCPVYSNLLGGGSLPHPMLNPTSLPSSLPSDGARRLLQ
PEHPREVLVPAPHSAFSFTGAAASMKDKACSPTSGSPTAGTAATAEHVVQPKATSAAMAA
PSSDEAMNLIKNKRNMTGYKTLPYPLKKQNGKIKYECNVCAKTFGQLSNLKVHLRVHSGE
RPFKCQTCNKGFTQLAHLQKHYLVHTGEKPHECQVCHKRFSSTSNLKTHLRLHSGEKPYQ
CKVCPAKFTQFVHLKLHKRLHTRERPHKCSQCHKNYIHLCSLKVHLKGNCAAAPAPGLPL
EDLTRINEEIEKFDISDNADRLEDVEDDISVISVVEKEILAVVRKEKEETGLKVSLQRNM
GNGLLSSGCSLYESSDLPLMKLPPSNPLPLVPVKVKQETVEPMDP
Function
Transcription factor that mediates a transcriptional program in various innate and adaptive immune tissue-resident lymphocyte T cell types such as tissue-resident memory T (Trm), natural killer (trNK) and natural killer T (NKT) cells and negatively regulates gene expression of proteins that promote the egress of tissue-resident T-cell populations from non-lymphoid organs. Plays a role in the development, retention and long-term establishment of adaptive and innate tissue-resident lymphocyte T cell types in non-lymphoid organs, such as the skin and gut, but also in other nonbarrier tissues like liver and kidney, and therefore may provide immediate immunological protection against reactivating infections or viral reinfection. Binds specifically to the PRDI element in the promoter of the beta-interferon gene. Drives the maturation of B-lymphocytes into Ig secreting cells. Associates with the transcriptional repressor ZNF683 to chromatin at gene promoter regions. Binds to the promoter and acts as a transcriptional repressor of IRF8, thereby promotes transcription of osteoclast differentiation factors such as NFATC1 and EEIG1.
Reactome Pathway
STAT3 nuclear events downstream of ALK signaling (R-HSA-9701898 )
Specification of primordial germ cells (R-HSA-9827857 )
Regulation of TP53 Expression (R-HSA-6804754 )

Molecular Interaction Atlas (MIA) of This DOT

44 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Classic Hodgkin lymphoma DISV1LU6 Definitive Altered Expression [1]
Lung cancer DISCM4YA Definitive Biomarker [2]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [3]
Adult lymphoma DISK8IZR Strong Biomarker [4]
AIDS-related lymphoma DISSLRAU Strong Posttranslational Modification [5]
Arteriosclerosis DISK5QGC Strong Biomarker [6]
Atherosclerosis DISMN9J3 Strong Biomarker [6]
B-cell neoplasm DISVY326 Strong Biomarker [7]
Breast cancer DIS7DPX1 Strong Biomarker [8]
Breast carcinoma DIS2UE88 Strong Biomarker [8]
Breast neoplasm DISNGJLM Strong Altered Expression [9]
Carcinoma DISH9F1N Strong Biomarker [10]
Cervical cancer DISFSHPF Strong Altered Expression [11]
Colon cancer DISVC52G Strong Altered Expression [12]
Colon carcinoma DISJYKUO Strong Altered Expression [12]
Crohn disease DIS2C5Q8 Strong Genetic Variation [13]
Extranodal NK/T-cell Lymphoma DIS72GCL Strong Altered Expression [14]
Glioma DIS5RPEH Strong Altered Expression [2]
Hepatitis B virus infection DISLQ2XY Strong Genetic Variation [15]
Inflammatory bowel disease DISGN23E Strong Biomarker [16]
leukaemia DISS7D1V Strong Biomarker [17]
Leukemia DISNAKFL Strong Biomarker [17]
Lung adenocarcinoma DISD51WR Strong Altered Expression [18]
Lung carcinoma DISTR26C Strong Biomarker [2]
Lupus DISOKJWA Strong Altered Expression [19]
Lymphoma DISN6V4S Strong Altered Expression [2]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [20]
Neoplasm DISZKGEW Strong Altered Expression [14]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [21]
Pancreatic cancer DISJC981 Strong Biomarker [22]
Pediatric lymphoma DIS51BK2 Strong Biomarker [4]
Plasma cell myeloma DIS0DFZ0 Strong Altered Expression [23]
Retinoblastoma DISVPNPB Strong Biomarker [24]
Sjogren syndrome DISUBX7H Strong Biomarker [25]
Small lymphocytic lymphoma DIS30POX Strong Altered Expression [26]
Systemic lupus erythematosus DISI1SZ7 Strong Genetic Variation [27]
Ulcerative colitis DIS8K27O Strong Genetic Variation [13]
Hepatocellular carcinoma DIS0J828 moderate Altered Expression [28]
Influenza DIS3PNU3 moderate Biomarker [29]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [13]
Colitis DISAF7DD Limited Biomarker [30]
Psoriasis DIS59VMN Limited Genetic Variation [13]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [13]
Squamous cell carcinoma DISQVIFL Limited Altered Expression [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Chlorothiazide DMLHESP Approved PR domain zinc finger protein 1 (PRDM1) increases the Neutropenia ADR of Chlorothiazide. [55]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of PR domain zinc finger protein 1 (PRDM1). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of PR domain zinc finger protein 1 (PRDM1). [47]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of PR domain zinc finger protein 1 (PRDM1). [49]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of PR domain zinc finger protein 1 (PRDM1). [52]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of PR domain zinc finger protein 1 (PRDM1). [33]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of PR domain zinc finger protein 1 (PRDM1). [34]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of PR domain zinc finger protein 1 (PRDM1). [35]
Decitabine DMQL8XJ Approved Decitabine affects the expression of PR domain zinc finger protein 1 (PRDM1). [36]
Marinol DM70IK5 Approved Marinol increases the expression of PR domain zinc finger protein 1 (PRDM1). [37]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of PR domain zinc finger protein 1 (PRDM1). [38]
Panobinostat DM58WKG Approved Panobinostat increases the expression of PR domain zinc finger protein 1 (PRDM1). [39]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of PR domain zinc finger protein 1 (PRDM1). [40]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of PR domain zinc finger protein 1 (PRDM1). [41]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of PR domain zinc finger protein 1 (PRDM1). [42]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of PR domain zinc finger protein 1 (PRDM1). [34]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of PR domain zinc finger protein 1 (PRDM1). [34]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of PR domain zinc finger protein 1 (PRDM1). [34]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline decreases the expression of PR domain zinc finger protein 1 (PRDM1). [43]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of PR domain zinc finger protein 1 (PRDM1). [34]
Ibrutinib DMHZCPO Approved Ibrutinib decreases the expression of PR domain zinc finger protein 1 (PRDM1). [44]
DNCB DMDTVYC Phase 2 DNCB increases the expression of PR domain zinc finger protein 1 (PRDM1). [45]
PD-0325901 DM27D4J Phase 2 PD-0325901 decreases the expression of PR domain zinc finger protein 1 (PRDM1). [46]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of PR domain zinc finger protein 1 (PRDM1). [48]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of PR domain zinc finger protein 1 (PRDM1). [50]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of PR domain zinc finger protein 1 (PRDM1). [51]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of PR domain zinc finger protein 1 (PRDM1). [53]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of PR domain zinc finger protein 1 (PRDM1). [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)

References

1 EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis.Leukemia. 2016 Mar;30(3):594-604. doi: 10.1038/leu.2015.285. Epub 2015 Nov 4.
2 Downregulation of PRDM1 promotes cellular invasion and lung cancer metastasis.Tumour Biol. 2017 Apr;39(4):1010428317695929. doi: 10.1177/1010428317695929.
3 Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia.J Hematol Oncol. 2017 Jun 19;10(1):124. doi: 10.1186/s13045-017-0486-z.
4 HSP70-Hrd1 axis precludes the oncorepressor potential of N-terminal misfolded Blimp-1s in lymphoma cells.Nat Commun. 2017 Aug 25;8(1):363. doi: 10.1038/s41467-017-00476-w.
5 PEGylated siRNA lipoplexes for silencing of BLIMP-1 in Primary Effusion Lymphoma: In vitro evidences of antitumoral activity.Eur J Pharm Biopharm. 2016 Feb;99:7-17. doi: 10.1016/j.ejpb.2015.11.007. Epub 2015 Nov 25.
6 Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.Arterioscler Thromb Vasc Biol. 2018 May;38(5):e71-e84. doi: 10.1161/ATVBAHA.117.310678. Epub 2018 Mar 29.
7 Adiponectin promotes fibroblast-like synoviocytes producing IL-6 to enhance T follicular helper cells response in rheumatoid arthritis.Clin Exp Rheumatol. 2020 Jan-Feb;38(1):11-18. Epub 2019 Apr 11.
8 Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion.Sci Rep. 2017 Apr 25;7(1):1145. doi: 10.1038/s41598-017-01332-z.
9 Epithelial-to-mesenchymal transition induced by TGF-1 is mediated by Blimp-1-dependent repression of BMP-5.Cancer Res. 2012 Dec 1;72(23):6268-78. doi: 10.1158/0008-5472.CAN-12-2270. Epub 2012 Oct 10.
10 Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential.Cell Death Differ. 2014 Feb;21(2):310-20. doi: 10.1038/cdd.2013.148. Epub 2013 Oct 25.
11 Methylation-mediated repression of PRDM14 contributes to apoptosis evasion in HPV-positive cancers.Carcinogenesis. 2014 Nov;35(11):2611-8. doi: 10.1093/carcin/bgu197. Epub 2014 Sep 18.
12 MiR-223-3p promotes the proliferation, invasion and migration of colon cancer cells by negative regulating PRDM1.Am J Transl Res. 2019 Jul 15;11(7):4516-4523. eCollection 2019.
13 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
14 JAK3/STAT3 oncogenic pathway and PRDM1 expression stratify clinicopathologic features of extranodal NK/Tcell lymphoma, nasal type.Oncol Rep. 2019 Jun;41(6):3219-3232. doi: 10.3892/or.2019.7112. Epub 2019 Apr 12.
15 Genetic association of polymorphisms at the intergenic region between PRDM1 and ATG5 with hepatitis B virus infection in Han Chinese patients.J Med Virol. 2020 Aug;92(8):1198-1205. doi: 10.1002/jmv.25629. Epub 2019 Nov 21.
16 Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis.Mol Med. 2015 Mar 24;20(1):707-19. doi: 10.2119/molmed.2014.00231.
17 The B-lymphocyte maturation promoting transcription factor BLIMP1/PRDI-BF1 maps to D6S447 on human chromosome 6q21-q22.1 and the syntenic region of mouse chromosome 10.Genomics. 1996 Oct 1;37(1):24-8. doi: 10.1006/geno.1996.0516.
18 Blimp1 activation by AP-1 in human lung cancer cells promotes a migratory phenotype and is inhibited by the lysyl oxidase propeptide.PLoS One. 2012;7(3):e33287. doi: 10.1371/journal.pone.0033287. Epub 2012 Mar 15.
19 Up-regulation of transcription factor Blimp1 in systemic lupus erythematosus.Mol Immunol. 2013 Dec;56(4):574-82. doi: 10.1016/j.molimm.2013.05.241. Epub 2013 Aug 1.
20 Genetic associations in classical hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms.Cancer Epidemiol Biomarkers Prev. 2014 Dec;23(12):2737-47. doi: 10.1158/1055-9965.EPI-14-0683. Epub 2014 Sep 9.
21 PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro.Chin Med J (Engl). 2015 Feb 5;128(3):373-7. doi: 10.4103/0366-6999.150109.
22 BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer.Cancer Discov. 2017 Oct;7(10):1184-1199. doi: 10.1158/2159-8290.CD-17-0250. Epub 2017 Aug 8.
23 Aiolos collaborates with Blimp-1 to regulate the survival of multiple myeloma cells.Cell Death Differ. 2016 Jul;23(7):1175-84. doi: 10.1038/cdd.2015.167. Epub 2016 Jan 29.
24 Aberrant expression of the MEL1S gene identified in association with hypomethylation in adult T-cell leukemia cells.Blood. 2004 Apr 1;103(7):2753-60. doi: 10.1182/blood-2003-07-2482. Epub 2003 Dec 4.
25 Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjgren's syndrome.Nat Genet. 2013 Nov;45(11):1284-92. doi: 10.1038/ng.2792. Epub 2013 Oct 6.
26 Age-related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients.BMC Cancer. 2019 Jan 17;19(1):81. doi: 10.1186/s12885-019-5276-2.
27 Kruppel-like factor4 regulates PRDM1 expression through binding to an autoimmune risk allele.JCI Insight. 2017 Jan 12;2(1):e89569. doi: 10.1172/jci.insight.89569.
28 PRDM1 levels are associated with clinical diseases in chronic HBV infection and survival of patients with HBV-related hepatocellular carcinoma.Int Immunopharmacol. 2019 Aug;73:156-162. doi: 10.1016/j.intimp.2019.05.012. Epub 2019 May 14.
29 Blimp-1 Rather Than Hobit Drives the Formation of Tissue-Resident Memory CD8(+) T Cells in the Lungs.Front Immunol. 2019 Mar 7;10:400. doi: 10.3389/fimmu.2019.00400. eCollection 2019.
30 Hobit- and Blimp-1-driven CD4(+) tissue-resident memory T cells control chronic intestinal inflammation.Nat Immunol. 2019 Mar;20(3):288-300. doi: 10.1038/s41590-018-0298-5. Epub 2019 Jan 28.
31 BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation.J Dermatol Sci. 2018 Nov;92(2):151-161. doi: 10.1016/j.jdermsci.2018.08.011. Epub 2018 Aug 31.
32 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
33 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
34 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
35 Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel). 2023 Feb 9;15(2):140. doi: 10.3390/toxins15020140.
36 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
37 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
38 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
39 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
40 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
41 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
42 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
43 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
44 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
45 Study on the inflammasome nlrp3 and blimp-1/nlrp12 after keratinocyte exposure to contact allergens. Toxicol Lett. 2019 Oct 1;313:130-136. doi: 10.1016/j.toxlet.2019.07.003. Epub 2019 Jul 2.
46 PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247-51.
47 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
48 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
49 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
50 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
51 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
52 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
53 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
54 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
55 Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci. 2013 Aug;104(8):1074-82. doi: 10.1111/cas.12186. Epub 2013 Jun 10.