General Information of Drug Off-Target (DOT) (ID: OTQRX7LC)

DOT Name E3 ubiquitin-protein ligase AMFR (AMFR)
Synonyms EC 2.3.2.36; Autocrine motility factor receptor; AMF receptor; RING finger protein 45; gp78
Gene Name AMFR
Related Disease
Pancreatic ductal carcinoma ( )
Retinitis pigmentosa ( )
Acute monocytic leukemia ( )
Adult acute monocytic leukemia ( )
Adult glioblastoma ( )
Adult T-cell leukemia/lymphoma ( )
Alpha-1 antitrypsin deficiency ( )
Alzheimer disease ( )
B-cell neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Cholestasis ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Coronary atherosclerosis ( )
Cystic fibrosis ( )
Differentiated thyroid carcinoma ( )
Familial Alzheimer disease ( )
Fatty liver disease ( )
Fibrosarcoma ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
Kidney neoplasm ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Malignant soft tissue neoplasm ( )
Melanoma ( )
Metabolic disorder ( )
Osteoporosis ( )
Parkinson disease ( )
Sarcoma ( )
Spastic paraplegia 89, autosomal recessive ( )
T-cell leukaemia ( )
Thyroid gland papillary carcinoma ( )
Thyroid gland undifferentiated (anaplastic) carcinoma ( )
Adenocarcinoma ( )
Chronic obstructive pulmonary disease ( )
Prostate cancer ( )
Prostate carcinoma ( )
Pulmonary emphysema ( )
Skin cancer ( )
Small lymphocytic lymphoma ( )
Advanced cancer ( )
Coronary heart disease ( )
Metastatic malignant neoplasm ( )
Non-small-cell lung cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
UniProt ID
AMFR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2EJS; 2LVN; 2LVO; 2LVP; 2LVQ; 2LXH; 2LXP; 3FSH; 3H8K; 3TIW; 4G3O; 4LAD
EC Number
2.3.2.36
Pfam ID
PF02845 ; PF18442 ; PF13639
Sequence
MPLLFLERFPWPSLRTYTGLSGLALLGTIISAYRALSQPEAGPGEPDQLTASLQPEPPAP
ARPSAGGPRARDVAQYLLSDSLFVWVLVNTACCVLMLVAKLIQCIVFGPLRVSERQHLKD
KFWNFIFYKFIFIFGVLNVQTVEEVVMWCLWFAGLVFLHLMVQLCKDRFEYLSFSPTTPM
SSHGRVLSLLVAMLLSCCGLAAVCSITGYTHGMHTLAFMAAESLLVTVRTAHVILRYVIH
LWDLNHEGTWEGKGTYVYYTDFVMELTLLSLDLMHHIHMLLFGNIWLSMASLVIFMQLRY
LFHEVQRRIRRHKNYLRVVGNMEARFAVATPEELAVNNDDCAICWDSMQAARKLPCGHLF
HNSCLRSWLEQDTSCPTCRMSLNIADNNRVREEHQGENLDENLVPVAAAEGRPRLNQHNH
FFHFDGSRIASWLPSFSVEVMHTTNILGITQASNSQLNAMAHQIQEMFPQVPYHLVLQDL
QLTRSVEITTDNILEGRIQVPFPTQRSDSIRPALNSPVERPSSDQEEGETSAQTERVPLD
LSPRLEETLDFGEVEVEPSEVEDFEARGSRFSKSADERQRMLVQRKDELLQQARKRFLNK
SSEDDAASESFLPSEGASSDPVTLRRRMLAAAAERRLQKQQTS
Function
E3 ubiquitin-protein ligase that mediates the polyubiquitination of lysine and cysteine residues on target proteins, such as CD3D, CYP3A4, CFTR, INSIG1, SOAT2/ACAT2 and APOB for proteasomal degradation. Component of a VCP/p97-AMFR/gp78 complex that participates in the final step of endoplasmic reticulum-associated degradation (ERAD). The VCP/p97-AMFR/gp78 complex is involved in the sterol-accelerated ERAD degradation of HMGCR through binding to the HMGCR-INSIG1 complex at the ER membrane. In addition, interaction of AMFR with AUP1 facilitates interaction of AMFR with ubiquitin-conjugating enzyme UBE2G2 and ubiquitin ligase RNF139, leading to sterol-induced HMGCR ubiquitination. The ubiquitinated HMGCR is then released from the ER into the cytosol for subsequent destruction. In addition to ubiquitination on lysine residues, catalyzes ubiquitination on cysteine residues: together with INSIG1, mediates polyubiquitination of SOAT2/ACAT2 at 'Cys-277', leading to its degradation when the lipid levels are low. Catalyzes ubiquitination and subsequent degradation of INSIG1 when cells are depleted of sterols. Mediates polyubiquitination of INSIG2 at 'Cys-215' in some tissues, leading to its degradation. Also regulates ERAD through the ubiquitination of UBL4A a component of the BAG6/BAT3 complex. Also acts as a scaffold protein to assemble a complex that couples ubiquitination, retranslocation and deglycosylation. Mediates tumor invasion and metastasis as a receptor for the GPI/autocrine motility factor. In association with LMBR1L and UBAC2, negatively regulates the canonical Wnt signaling pathway in the lymphocytes by promoting the ubiquitin-mediated degradation of CTNNB1 and Wnt receptors FZD6 and LRP6. Regulates NF-kappa-B and MAPK signaling pathways by mediating 'Lys-27'-linked polyubiquitination of TAB3 and promoting subsequent TAK1/MAP3K7 activation. Required for proper lipid homeostasis.
Tissue Specificity Widely expressed.
KEGG Pathway
Mitophagy - animal (hsa04137 )
Protein processing in endoplasmic reticulum (hsa04141 )
Reactome Pathway
ER Quality Control Compartment (ERQC) (R-HSA-901032 )
N-glycan trimming in the ER and Calnexin/Calreticulin cycle (R-HSA-532668 )

Molecular Interaction Atlas (MIA) of This DOT

49 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Pancreatic ductal carcinoma DIS26F9Q Definitive Biomarker [1]
Retinitis pigmentosa DISCGPY8 Definitive Biomarker [1]
Acute monocytic leukemia DIS28NEL Strong Biomarker [2]
Adult acute monocytic leukemia DISG6BLX Strong Biomarker [2]
Adult glioblastoma DISVP4LU Strong Genetic Variation [3]
Adult T-cell leukemia/lymphoma DIS882XU Strong Biomarker [4]
Alpha-1 antitrypsin deficiency DISQKEHW Strong Altered Expression [5]
Alzheimer disease DISF8S70 Strong Biomarker [1]
B-cell neoplasm DISVY326 Strong Altered Expression [2]
Breast cancer DIS7DPX1 Strong Biomarker [6]
Breast carcinoma DIS2UE88 Strong Genetic Variation [7]
Cholestasis DISDJJWE Strong Posttranslational Modification [8]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [10]
Coronary atherosclerosis DISKNDYU Strong Genetic Variation [11]
Cystic fibrosis DIS2OK1Q Strong Genetic Variation [12]
Differentiated thyroid carcinoma DIS1V20Y Strong Altered Expression [13]
Familial Alzheimer disease DISE75U4 Strong Biomarker [14]
Fatty liver disease DIS485QZ Strong Altered Expression [15]
Fibrosarcoma DISWX7MU Strong Posttranslational Modification [16]
Glioblastoma multiforme DISK8246 Strong Genetic Variation [3]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [17]
Kidney neoplasm DISBNZTN Strong Biomarker [9]
Lung cancer DISCM4YA Strong Altered Expression [18]
Lung carcinoma DISTR26C Strong Altered Expression [18]
Lung neoplasm DISVARNB Strong Altered Expression [19]
Malignant soft tissue neoplasm DISTC6NO Strong Altered Expression [20]
Melanoma DIS1RRCY Strong Altered Expression [21]
Metabolic disorder DIS71G5H Strong Biomarker [15]
Osteoporosis DISF2JE0 Strong Biomarker [22]
Parkinson disease DISQVHKL Strong Biomarker [23]
Sarcoma DISZDG3U Strong Altered Expression [20]
Spastic paraplegia 89, autosomal recessive DISZ8VFC Strong Autosomal recessive [24]
T-cell leukaemia DISJ6YIF Strong Biomarker [4]
Thyroid gland papillary carcinoma DIS48YMM Strong Altered Expression [13]
Thyroid gland undifferentiated (anaplastic) carcinoma DISYBB1W Strong Altered Expression [13]
Adenocarcinoma DIS3IHTY moderate Altered Expression [25]
Chronic obstructive pulmonary disease DISQCIRF moderate Altered Expression [26]
Prostate cancer DISF190Y moderate Biomarker [27]
Prostate carcinoma DISMJPLE moderate Biomarker [27]
Pulmonary emphysema DIS5M7HZ moderate Genetic Variation [26]
Skin cancer DISTM18U moderate Altered Expression [27]
Small lymphocytic lymphoma DIS30POX moderate Altered Expression [28]
Advanced cancer DISAT1Z9 Limited Altered Expression [13]
Coronary heart disease DIS5OIP1 Limited Genetic Variation [29]
Metastatic malignant neoplasm DIS86UK6 Limited Biomarker [30]
Non-small-cell lung cancer DIS5Y6R9 Limited Altered Expression [31]
Urinary bladder cancer DISDV4T7 Limited Biomarker [32]
Urinary bladder neoplasm DIS7HACE Limited Biomarker [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 49 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved E3 ubiquitin-protein ligase AMFR (AMFR) decreases the response to substance of Arsenic trioxide. [44]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of E3 ubiquitin-protein ligase AMFR (AMFR). [33]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of E3 ubiquitin-protein ligase AMFR (AMFR). [40]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of E3 ubiquitin-protein ligase AMFR (AMFR). [42]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of E3 ubiquitin-protein ligase AMFR (AMFR). [42]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [34]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [35]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [36]
Temozolomide DMKECZD Approved Temozolomide increases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [37]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [38]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [41]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of E3 ubiquitin-protein ligase AMFR (AMFR). [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Diverse mechanisms of autophagy dysregulation and their therapeutic implications: does the shoe fit?.Autophagy. 2019 Feb;15(2):368-371. doi: 10.1080/15548627.2018.1509609. Epub 2018 Sep 13.
2 Autocrine motility factor receptor promotes the proliferation of human acute monocytic leukemia THP-1 cells.Int J Mol Med. 2015 Sep;36(3):627-32. doi: 10.3892/ijmm.2015.2267. Epub 2015 Jun 30.
3 Association between autocrine motility factor receptor gene polymorphism (rs2440472, rs373191257) and glioblastoma multiform in a representative Iranian population.J Res Med Sci. 2018 Nov 28;23:96. doi: 10.4103/jrms.JRMS_305_18. eCollection 2018.
4 Antibody responses associated with the graft-versus-leukemia effect in adult T-cell leukemia.Int J Hematol. 2006 May;83(4):351-5. doi: 10.1532/IJH97.05173.
5 SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78.PLoS One. 2017 Mar 16;12(3):e0172983. doi: 10.1371/journal.pone.0172983. eCollection 2017.
6 Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer.Oncogene. 2016 Mar 24;35(12):1517-28. doi: 10.1038/onc.2015.214. Epub 2015 Jun 29.
7 Association analysis identifies 65 new breast cancer risk loci.Nature. 2017 Nov 2;551(7678):92-94. doi: 10.1038/nature24284. Epub 2017 Oct 23.
8 Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis.J Hepatol. 2015 Dec;63(6):1440-8. doi: 10.1016/j.jhep.2015.07.016. Epub 2015 Jul 23.
9 Increased Expression of the Autocrine Motility Factor is Associated With Poor Prognosis in Patients With Clear Cell-Renal Cell Carcinoma.Medicine (Baltimore). 2015 Nov;94(46):e2117. doi: 10.1097/MD.0000000000002117.
10 Role of HSPA1L as a cellular prion protein stabilizer in tumor progression via HIF-1/GP78 axis.Oncogene. 2017 Nov 23;36(47):6555-6567. doi: 10.1038/onc.2017.263. Epub 2017 Jul 31.
11 Correlation between the GP78 Gene Polymorphism and Coronary Atherosclerotic Heart Disease.Hellenic J Cardiol. 2018 Jan-Feb;59(1):8-13. doi: 10.1016/j.hjc.2017.02.001. Epub 2017 Feb 15.
12 Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications.J Biol Chem. 2006 Jun 23;281(25):17369-17378. doi: 10.1074/jbc.M600509200. Epub 2006 Apr 18.
13 Expression of Gp78/Autocrine Motility Factor Receptor and Endocytosis of Autocrine Motility Factor in Human Thyroid Cancer Cells.Cureus. 2019 Jun 17;11(6):e4928. doi: 10.7759/cureus.4928.
14 Autocrine motility factor receptor is involved in the process of learning and memory in the central nervous system.Behav Brain Res. 2012 Apr 15;229(2):412-8. doi: 10.1016/j.bbr.2012.01.043. Epub 2012 Jan 31.
15 Role of glycoprotein 78 and cidec in hepatic steatosis.Mol Med Rep. 2017 Aug;16(2):1871-1877. doi: 10.3892/mmr.2017.6834. Epub 2017 Jun 21.
16 Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor.J Biol Chem. 1991 Jul 15;266(20):13442-8.
17 Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma.Dig Dis Sci. 2007 Mar;52(3):770-5. doi: 10.1007/s10620-006-9479-4.
18 Autocrine motility factor receptor: a clinical review.Expert Rev Anticancer Ther. 2008 Feb;8(2):207-17. doi: 10.1586/14737140.8.2.207.
19 Autocrine motility factor-receptor gene expression in lung cancer.Jpn J Thorac Cardiovasc Surg. 2003 Aug;51(8):368-73. doi: 10.1007/BF02719469.
20 The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation.Nat Med. 2007 Dec;13(12):1504-9. doi: 10.1038/nm1686. Epub 2007 Nov 25.
21 Expression and function of the AMF receptor by human melanoma in experimental and clinical systems.Clin Exp Metastasis. 2002;19(3):225-32. doi: 10.1023/a:1015595708241.
22 Affinity proteomics discovers decreased levels of AMFR in plasma from Osteoporosis patients.Proteomics Clin Appl. 2016 Jun;10(6):681-90. doi: 10.1002/prca.201400167. Epub 2015 Apr 21.
23 CDK5-Mediated Phosphorylation-Dependent Ubiquitination and Degradation of E3 Ubiquitin Ligases GP78 Accelerates Neuronal Death in Parkinson's Disease.Mol Neurobiol. 2018 May;55(5):3709-3717. doi: 10.1007/s12035-017-0579-2. Epub 2017 May 20.
24 AMFR dysfunction causes autosomal recessive spastic paraplegia in human that is amenable to statin treatment in a preclinical model. Acta Neuropathol. 2023 Aug;146(2):353-368. doi: 10.1007/s00401-023-02579-9. Epub 2023 Apr 29.
25 Autocrine motility factor receptor expression implies an unfavourable prognosis in resected stage I pulmonary adenocarcinomas.Acta Chir Belg. 2005 Aug;105(4):378-82. doi: 10.1080/00015458.2005.11679740.
26 Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema.J Mol Med (Berl). 2011 Jun;89(6):577-93. doi: 10.1007/s00109-011-0732-8. Epub 2011 Feb 12.
27 gp78 is specifically expressed in human prostate cancer rather than normal prostate tissue.J Mol Histol. 2013 Dec;44(6):653-9. doi: 10.1007/s10735-013-9512-9. Epub 2013 May 12.
28 The autocrine motility factor receptor is overexpressed on the surface of B cells in Binet C chronic lymphocytic leukemia.Med Oncol. 2011 Dec;28(4):1542-8. doi: 10.1007/s12032-010-9555-7. Epub 2010 Jun 24.
29 A novel polymorphism of the GP78 gene is associated with coronary artery disease in Han population in China.Lipids Health Dis. 2014 Sep 9;13:147. doi: 10.1186/1476-511X-13-147.
30 Induction via Functional Protein Stabilization of Hepatic Cytochromes P450 upon gp78/Autocrine Motility Factor Receptor (AMFR) Ubiquitin E3-Ligase Genetic Ablation in Mice: Therapeutic and Toxicological Relevance.Mol Pharmacol. 2019 Nov;96(5):641-654. doi: 10.1124/mol.119.117069. Epub 2019 Sep 6.
31 Significance of autocrine motility factor receptor gene expression as a prognostic factor in non-small-cell lung cancer.Int J Cancer. 2001 Nov 20;95(6):384-7. doi: 10.1002/1097-0215(20011120)95:6<384::aid-ijc1068>3.0.co;2-d.
32 Paclitaxel-based second-line therapy for patients with advanced chemotherapy-resistant bladder carcinoma (M1): a clinical Phase II study.Cancer. 1997 Aug 1;80(3):465-70. doi: 10.1002/(sici)1097-0142(19970801)80:3<465::aid-cncr14>3.0.co;2-v.
33 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
34 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
35 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
36 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
37 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
38 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
39 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
40 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
41 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
42 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
43 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
44 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.