General Information of Drug Off-Target (DOT) (ID: OTR9MLLW)

DOT Name Carbohydrate-responsive element-binding protein (MLXIPL)
Synonyms
ChREBP; Class D basic helix-loop-helix protein 14; bHLHd14; MLX interactor; MLX-interacting protein-like; WS basic-helix-loop-helix leucine zipper protein; WS-bHLH; Williams-Beuren syndrome chromosomal region 14 protein
Gene Name MLXIPL
Related Disease
Chronic renal failure ( )
Diabetic kidney disease ( )
Acute myelogenous leukaemia ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Cardiovascular disease ( )
Cervical cancer ( )
Cervical carcinoma ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Coronary ischemia ( )
Cytomegalovirus infection ( )
Fatty liver disease ( )
Glycogen storage disease I ( )
Gout ( )
Hereditary fructose intolerance ( )
Hyperglycemia ( )
Hyperinsulinemia ( )
Hyperlipidemia ( )
Hyperlipidemia, familial combined, LPL related ( )
Hypothyroidism ( )
Irritable bowel syndrome ( )
leukaemia ( )
Leukemia ( )
Malabsorption syndrome ( )
Metabolic disorder ( )
Non-insulin dependent diabetes ( )
Obesity ( )
Prostate carcinoma ( )
Type-1/2 diabetes ( )
Advanced cancer ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Liver cancer ( )
Retinopathy ( )
Non-alcoholic fatty liver disease ( )
Breast neoplasm ( )
Colorectal carcinoma ( )
Hepatocellular carcinoma ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Prediabetes syndrome ( )
UniProt ID
MLXPL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6MJL; 6YGJ
Pfam ID
PF00010
Sequence
MAGALAGLAAGLQVPRVAPSPDSDSDTDSEDPSLRRSAGGLLRSQVIHSGHFMVSSPHSD
SLPRRRDQEGSVGPSDFGPRSIDPTLTRLFECLSLAYSGKLVSPKWKNFKGLKLLCRDKI
RLNNAIWRAWYIQYVKRRKSPVCGFVTPLQGPEADAHRKPEAVVLEGNYWKRRIEVVMRE
YHKWRIYYKKRLRKPSREDDLLAPKQAEGRWPPPEQWCKQLFSSVVPVLLGDPEEEPGGR
QLLDLNCFLSDISDTLFTMTQSGPSPLQLPPEDAYVGNADMIQPDLTPLQPSLDDFMDIS
DFFTNSRLPQPPMPSNFPEPPSFSPVVDSLFSSGTLGPEVPPASSAMTHLSGHSRLQARN
SCPGPLDSSAFLSSDFLLPEDPKPRLPPPPVPPPLLHYPPPAKVPGLEPCPPPPFPPMAP
PTALLQEEPLFSPRFPFPTVPPAPGVSPLPAPAAFPPTPQSVPSPAPTPFPIELLPLGYS
EPAFGPCFSMPRGKPPAPSPRGQKASPPTLAPATASPPTTAGSNNPCLTQLLTAAKPEQA
LEPPLVSSTLLRSPGSPQETVPEFPCTFLPPTPAPTPPRPPPGPATLAPSRPLLVPKAER
LSPPAPSGSERRLSGDLSSMPGPGTLSVRVSPPQPILSRGRPDSNKTENRRITHISAEQK
RRFNIKLGFDTLHGLVSTLSAQPSLKVSKATTLQKTAEYILMLQQERAGLQEEAQQLRDE
IEELNAAINLCQQQLPATGVPITHQRFDQMRDMFDDYVRTRTLHNWKFWVFSILIRPLFE
SFNGMVSTASVHTLRQTSLAWLDQYCSLPALRPTVLNSLRQLGTSTSILTDPGRIPEQAT
RAVTEGTLGKPL
Function
Binds DNA as a heterodimer with MLX/TCFL4 and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. Regulates transcription in response to changes in cellular carbohydrate abundance such as occurs during fasting to feeding metabolic transition. Refeeding stimulates MLXIPL/ChREBP transcription factor, leading to increased BCKDK to PPM1K expression ratio, phosphorylation and activation of ACLY that ultimately results in the generation of malonyl-CoA and oxaloacetate immediate substrates of de novo lipogenesis and gluconeogenesis, respectively.
Tissue Specificity Expressed in liver, heart, kidney, cerebellum and intestinal tissues.
KEGG Pathway
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Reactome Pathway
AMPK inhibits chREBP transcriptional activation activity (R-HSA-163680 )
ChREBP activates metabolic gene expression (R-HSA-163765 )
PP2A-mediated dephosphorylation of key metabolic factors (R-HSA-163767 )
PKA-mediated phosphorylation of key metabolic factors (R-HSA-163358 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Definitive Biomarker [1]
Diabetic kidney disease DISJMWEY Definitive Biomarker [2]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [3]
Arteriosclerosis DISK5QGC Strong Biomarker [4]
Atherosclerosis DISMN9J3 Strong Biomarker [4]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [5]
Cervical cancer DISFSHPF Strong Altered Expression [6]
Cervical carcinoma DIST4S00 Strong Altered Expression [6]
Coronary atherosclerosis DISKNDYU Strong Genetic Variation [7]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [7]
Coronary ischemia DISDJJ5G Strong Genetic Variation [7]
Cytomegalovirus infection DISCEMGC Strong Biomarker [8]
Fatty liver disease DIS485QZ Strong Altered Expression [9]
Glycogen storage disease I DISY4Q9T Strong Biomarker [10]
Gout DISHC0U7 Strong Genetic Variation [11]
Hereditary fructose intolerance DISWLA0D Strong Biomarker [12]
Hyperglycemia DIS0BZB5 Strong Altered Expression [13]
Hyperinsulinemia DISIDWT6 Strong Altered Expression [14]
Hyperlipidemia DIS61J3S Strong Altered Expression [15]
Hyperlipidemia, familial combined, LPL related DISL1CE3 Strong Genetic Variation [16]
Hypothyroidism DISR0H6D Strong Biomarker [17]
Irritable bowel syndrome DIS27206 Strong Biomarker [12]
leukaemia DISS7D1V Strong Biomarker [3]
Leukemia DISNAKFL Strong Biomarker [3]
Malabsorption syndrome DISGMUVS Strong Biomarker [18]
Metabolic disorder DIS71G5H Strong Biomarker [19]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [20]
Obesity DIS47Y1K Strong Genetic Variation [21]
Prostate carcinoma DISMJPLE Strong Biomarker [22]
Type-1/2 diabetes DISIUHAP Strong Altered Expression [23]
Advanced cancer DISAT1Z9 moderate Altered Expression [24]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W moderate Biomarker [24]
Liver cancer DISDE4BI moderate Biomarker [24]
Retinopathy DISB4B0F moderate Biomarker [25]
Non-alcoholic fatty liver disease DISDG1NL Disputed Biomarker [26]
Breast neoplasm DISNGJLM Limited Biomarker [27]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [28]
Hepatocellular carcinoma DIS0J828 Limited Altered Expression [24]
Metastatic malignant neoplasm DIS86UK6 Limited Biomarker [27]
Neoplasm DISZKGEW Limited Genetic Variation [29]
Prediabetes syndrome DISH2I53 Limited Altered Expression [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [30]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [31]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [33]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [34]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [35]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [36]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [37]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [38]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [39]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [42]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [43]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [35]
GW-3965 DMG60ET Investigative GW-3965 decreases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [44]
CITCO DM0N634 Investigative CITCO increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [45]
paxilline DMPF2N1 Investigative paxilline increases the expression of Carbohydrate-responsive element-binding protein (MLXIPL). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Carbohydrate-responsive element-binding protein (MLXIPL). [41]
------------------------------------------------------------------------------------

References

1 Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.Biochim Biophys Acta. 2010 Jan;1800(1):6-15. doi: 10.1016/j.bbagen.2009.10.009. Epub 2009 Oct 28.
2 Expression and pathophysiological significance of carbohydrate response element binding protein (ChREBP) in the renal tubules of diabetic kidney.Endocr J. 2020 Mar 28;67(3):335-345. doi: 10.1507/endocrj.EJ19-0133. Epub 2019 Dec 7.
3 ChREBP promotes the differentiation of leukemia-initiating cells to inhibit leukemogenesis through the TXNIP/RUNX1 pathways.Oncotarget. 2016 Jun 21;7(25):38347-38358. doi: 10.18632/oncotarget.9520.
4 Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation.Cell Rep. 2015 Oct 6;13(1):132-144. doi: 10.1016/j.celrep.2015.08.068. Epub 2015 Sep 24.
5 Genetic and Environmental Biomarkers Associated with Triglyceride Levels in Two Groups of Slovak Women.Genet Test Mol Biomarkers. 2017 Jan;21(1):46-52. doi: 10.1089/gtmb.2016.0205. Epub 2016 Nov 17.
6 TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion.J Biochem. 2020 Apr 1;167(4):371-377. doi: 10.1093/jb/mvz105.
7 C771G (His241Gln) polymorphism of MLXIPL gene, TG levels and coronary artery disease: a case control study.Anatol J Cardiol. 2015 Jan;15(1):8-12. doi: 10.5152/akd.2014.5135. Epub 2014 Feb 10.
8 ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells.Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1951-6. doi: 10.1073/pnas.1310779111. Epub 2014 Jan 21.
9 Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes.J Cell Mol Med. 2020 Jan;24(2):1399-1412. doi: 10.1111/jcmm.14818. Epub 2019 Dec 6.
10 Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor (LXR) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type 1.Biochem J. 2010 Dec 1;432(2):249-54. doi: 10.1042/BJ20101225.
11 Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013 Feb;45(2):145-54. doi: 10.1038/ng.2500. Epub 2012 Dec 23.
12 Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism.BMB Rep. 2018 Sep;51(9):429-436. doi: 10.5483/BMBRep.2018.51.9.197.
13 Decreased transcription of ChREBP-/ isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia.Diabetes. 2013 Mar;62(3):837-44. doi: 10.2337/db12-0889. Epub 2012 Dec 3.
14 SIRT1 overexpression attenuates offspring metabolic and liver disorders as a result of maternal high-fat feeding.J Physiol. 2019 Jan;597(2):467-480. doi: 10.1113/JP276957. Epub 2018 Oct 31.
15 ChREBP Reciprocally Regulates Liver and Plasma Triacylglycerol Levels in Different Manners.Nutrients. 2018 Nov 7;10(11):1699. doi: 10.3390/nu10111699.
16 Common genetic variants contribute to primary hypertriglyceridemia without differences between familial combined hyperlipidemia and isolated hypertriglyceridemia.Circ Cardiovasc Genet. 2014 Dec;7(6):814-21. doi: 10.1161/CIRCGENETICS.114.000522. Epub 2014 Aug 30.
17 3,5-diiodo-L-thyronine increases de novo lipogenesis in liver from hypothyroid rats by SREBP-1 and ChREBP-mediated transcriptional mechanisms.IUBMB Life. 2019 Jul;71(7):863-872. doi: 10.1002/iub.2014. Epub 2019 Feb 1.
18 ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption.Nutrients. 2018 Mar 12;10(3):340. doi: 10.3390/nu10030340.
19 Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis.Diabetologia. 2018 Feb;61(2):317-330. doi: 10.1007/s00125-017-4475-0. Epub 2017 Nov 2.
20 Glucose-Sensing Transcription Factor MondoA/ChREBP as Targets for Type 2 Diabetes: Opportunities and Challenges.Int J Mol Sci. 2019 Oct 16;20(20):5132. doi: 10.3390/ijms20205132.
21 Lipid regulatory genes polymorphism in children with and without obesity and cardiometabolic risk factors: The CASPIAN-III study.J Res Med Sci. 2018 Feb 20;23:11. doi: 10.4103/jrms.JRMS_911_17. eCollection 2018.
22 Thioredoxin-interacting protein: an oxidative stress-related gene is upregulated by glucose in human prostate carcinoma cells.J Mol Endocrinol. 2009 Mar;42(3):205-14. doi: 10.1677/JME-08-0033. Epub 2008 Dec 3.
23 FMK, an Inhibitor of p90RSK, Inhibits High Glucose-Induced TXNIP Expression via Regulation of ChREBP in Pancreatic Cells.Int J Mol Sci. 2019 Sep 9;20(18):4424. doi: 10.3390/ijms20184424.
24 Expressions of Carbohydrate Response Element Binding Protein and Glucose Transporters in Liver Cancer and Clinical Significance.Pathol Oncol Res. 2020 Apr;26(2):1331-1340. doi: 10.1007/s12253-019-00708-y. Epub 2019 Aug 12.
25 High glucose activates ChREBP-mediated HIF-1 and VEGF expression in human RPE cells under normoxia.Adv Exp Med Biol. 2014;801:609-21. doi: 10.1007/978-1-4614-3209-8_77.
26 Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP- and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet.Nutr Res. 2019 Apr;64:49-55. doi: 10.1016/j.nutres.2019.01.002. Epub 2019 Jan 11.
27 Role of carbohydrate response element-binding protein (ChREBP) in generating an aerobic metabolic phenotype and in breast cancer progression.Br J Cancer. 2014 Feb 4;110(3):715-23. doi: 10.1038/bjc.2013.765. Epub 2013 Dec 24.
28 The ubiquitination ligase SMURF2 reduces aerobic glycolysis and colorectal cancer cell proliferation by promoting ChREBP ubiquitination and degradation.J Biol Chem. 2019 Oct 4;294(40):14745-14756. doi: 10.1074/jbc.RA119.007508. Epub 2019 Aug 13.
29 Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.Sci Rep. 2016 Jan 4;6:18669. doi: 10.1038/srep18669.
30 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
31 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
32 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
35 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
36 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
37 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
38 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
39 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
40 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
41 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
42 Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J Appl Toxicol. 2015 Sep;35(9):1058-70.
43 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
44 Combinations of LXR and RXR agonists induce triglyceride accumulation in human HepaRG cells in a synergistic manner. Arch Toxicol. 2020 Apr;94(4):1303-1320. doi: 10.1007/s00204-020-02685-7. Epub 2020 Mar 2.
45 Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol. 2016 Jul 15;303:90-100. doi: 10.1016/j.taap.2016.05.006. Epub 2016 May 11.