General Information of Drug Off-Target (DOT) (ID: OTII38K2)

DOT Name Cyclin-G2 (CCNG2)
Gene Name CCNG2
Related Disease
Adult glioblastoma ( )
Advanced cancer ( )
Astrocytoma ( )
Carcinoma of esophagus ( )
Colorectal carcinoma ( )
Diabetic kidney disease ( )
Epithelial ovarian cancer ( )
Esophageal cancer ( )
Gastric adenocarcinoma ( )
Glioblastoma multiforme ( )
Glioma ( )
Glomerulosclerosis ( )
Hyperinsulinemia ( )
Kidney cancer ( )
Neoplasm of esophagus ( )
Oral cancer ( )
Ovarian neoplasm ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Rheumatoid arthritis ( )
Squamous cell carcinoma ( )
Triple negative breast cancer ( )
Carcinoma ( )
Laryngeal squamous cell carcinoma ( )
leukaemia ( )
Leukemia ( )
Nasopharyngeal carcinoma ( )
Neuroblastoma ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Breast cancer ( )
Breast carcinoma ( )
Gastric cancer ( )
Gastric neoplasm ( )
Lung cancer ( )
Lung carcinoma ( )
Stomach cancer ( )
UniProt ID
CCNG2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00134
Sequence
MKDLGAEHLAGHEGVQLLGLLNVYLEQEERFQPREKGLSLIEATPENDNTLCPGLRNAKV
EDLRSLANFFGSCTETFVLAVNILDRFLALMKVKPKHLSCIGVCSFLLAARIVEEDCNIP
STHDVIRISQCKCTASDIKRMEKIISEKLHYELEATTALNFLHLYHTIILCHTSERKEIL
SLDKLEAQLKACNCRLIFSKAKPSVLALCLLNLEVETLKSVELLEILLLVKKHSKINDTE
FFYWRELVSKCLAEYSSPECCKPDLKKLVWIVSRRTAQNLHNSYYSVPELPTIPEGGCFD
ESESEDSCEDMSCGEESLSSSPPSDQECTFFFNFKVAQTLCFPS
Function May play a role in growth regulation and in negative regulation of cell cycle progression.
Tissue Specificity High levels in cerebellum, thymus, spleen and prostate. Low levels in skeletal muscle.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
p53 sig.ling pathway (hsa04115 )
Reactome Pathway
FOXO-mediated transcription of cell cycle genes (R-HSA-9617828 )

Molecular Interaction Atlas (MIA) of This DOT

38 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult glioblastoma DISVP4LU Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Astrocytoma DISL3V18 Strong Altered Expression [3]
Carcinoma of esophagus DISS6G4D Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [5]
Diabetic kidney disease DISJMWEY Strong Biomarker [6]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [7]
Esophageal cancer DISGB2VN Strong Biomarker [4]
Gastric adenocarcinoma DISWWLTC Strong Biomarker [8]
Glioblastoma multiforme DISK8246 Strong Biomarker [1]
Glioma DIS5RPEH Strong Biomarker [9]
Glomerulosclerosis DISJF20Z Strong Biomarker [6]
Hyperinsulinemia DISIDWT6 Strong Altered Expression [10]
Kidney cancer DISBIPKM Strong Biomarker [11]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [4]
Oral cancer DISLD42D Strong Biomarker [12]
Ovarian neoplasm DISEAFTY Strong Biomarker [13]
Renal carcinoma DISER9XT Strong Biomarker [11]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [11]
Rheumatoid arthritis DISTSB4J Strong Genetic Variation [14]
Squamous cell carcinoma DISQVIFL Strong Biomarker [15]
Triple negative breast cancer DISAMG6N Strong Biomarker [16]
Carcinoma DISH9F1N moderate Biomarker [17]
Laryngeal squamous cell carcinoma DIS9UUVF moderate Altered Expression [18]
leukaemia DISS7D1V moderate Altered Expression [19]
Leukemia DISNAKFL moderate Altered Expression [19]
Nasopharyngeal carcinoma DISAOTQ0 moderate Altered Expression [20]
Neuroblastoma DISVZBI4 moderate Altered Expression [21]
Thyroid cancer DIS3VLDH moderate Biomarker [22]
Thyroid gland carcinoma DISMNGZ0 moderate Biomarker [22]
Thyroid tumor DISLVKMD moderate Biomarker [22]
Breast cancer DIS7DPX1 Limited Biomarker [23]
Breast carcinoma DIS2UE88 Limited Biomarker [23]
Gastric cancer DISXGOUK Limited Altered Expression [24]
Gastric neoplasm DISOKN4Y Limited Biomarker [24]
Lung cancer DISCM4YA Limited Biomarker [25]
Lung carcinoma DISTR26C Limited Biomarker [25]
Stomach cancer DISKIJSX Limited Altered Expression [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 38 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved Cyclin-G2 (CCNG2) affects the response to substance of Topotecan. [61]
------------------------------------------------------------------------------------
54 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Cyclin-G2 (CCNG2). [26]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cyclin-G2 (CCNG2). [27]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Cyclin-G2 (CCNG2). [28]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Cyclin-G2 (CCNG2). [29]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cyclin-G2 (CCNG2). [30]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Cyclin-G2 (CCNG2). [31]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Cyclin-G2 (CCNG2). [32]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cyclin-G2 (CCNG2). [33]
Triclosan DMZUR4N Approved Triclosan increases the expression of Cyclin-G2 (CCNG2). [34]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cyclin-G2 (CCNG2). [35]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Cyclin-G2 (CCNG2). [36]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Cyclin-G2 (CCNG2). [37]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Cyclin-G2 (CCNG2). [30]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Cyclin-G2 (CCNG2). [38]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Cyclin-G2 (CCNG2). [39]
Ethanol DMDRQZU Approved Ethanol increases the expression of Cyclin-G2 (CCNG2). [40]
Etoposide DMNH3PG Approved Etoposide increases the expression of Cyclin-G2 (CCNG2). [41]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Cyclin-G2 (CCNG2). [42]
Nicotine DMWX5CO Approved Nicotine increases the expression of Cyclin-G2 (CCNG2). [43]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Cyclin-G2 (CCNG2). [44]
Azacitidine DMTA5OE Approved Azacitidine decreases the expression of Cyclin-G2 (CCNG2). [45]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Cyclin-G2 (CCNG2). [29]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Cyclin-G2 (CCNG2). [46]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Cyclin-G2 (CCNG2). [29]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Cyclin-G2 (CCNG2). [29]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Cyclin-G2 (CCNG2). [29]
Daunorubicin DMQUSBT Approved Daunorubicin increases the expression of Cyclin-G2 (CCNG2). [41]
Lindane DMB8CNL Approved Lindane increases the expression of Cyclin-G2 (CCNG2). [47]
Bicalutamide DMZMSPF Approved Bicalutamide increases the expression of Cyclin-G2 (CCNG2). [48]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Cyclin-G2 (CCNG2). [47]
Fluoxetine DM3PD2C Approved Fluoxetine increases the expression of Cyclin-G2 (CCNG2). [47]
Estrone DM5T6US Approved Estrone decreases the expression of Cyclin-G2 (CCNG2). [30]
Mestranol DMG3F94 Approved Mestranol decreases the expression of Cyclin-G2 (CCNG2). [30]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Cyclin-G2 (CCNG2). [49]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Cyclin-G2 (CCNG2). [37]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Cyclin-G2 (CCNG2). [50]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Cyclin-G2 (CCNG2). [30]
GDC0941 DM1YAK6 Phase 2 GDC0941 increases the expression of Cyclin-G2 (CCNG2). [51]
GDC-0980/RG7422 DMF3MV1 Phase 2 GDC-0980/RG7422 increases the expression of Cyclin-G2 (CCNG2). [51]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Cyclin-G2 (CCNG2). [52]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Cyclin-G2 (CCNG2). [53]
GSK618334 DMJPXZ4 Phase 1 GSK618334 increases the expression of Cyclin-G2 (CCNG2). [47]
HEXESTROL DM9AGWQ Withdrawn from market HEXESTROL decreases the expression of Cyclin-G2 (CCNG2). [30]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Cyclin-G2 (CCNG2). [54]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Cyclin-G2 (CCNG2). [55]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Cyclin-G2 (CCNG2). [56]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Cyclin-G2 (CCNG2). [38]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Cyclin-G2 (CCNG2). [57]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Cyclin-G2 (CCNG2). [58]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Cyclin-G2 (CCNG2). [47]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Cyclin-G2 (CCNG2). [59]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the expression of Cyclin-G2 (CCNG2). [60]
Rapamycin Immunosuppressant Drug DM678IB Investigative Rapamycin Immunosuppressant Drug increases the expression of Cyclin-G2 (CCNG2). [47]
1,4-Dithiothreitol DMIFOXE Investigative 1,4-Dithiothreitol increases the expression of Cyclin-G2 (CCNG2). [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 54 Drug(s)

References

1 Cyclin G2 promotes hypoxia-driven local invasion of glioblastoma by orchestrating cytoskeletal dynamics.Neoplasia. 2013 Nov;15(11):1272-81. doi: 10.1593/neo.131440.
2 Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1.Urol Oncol. 2018 Jun;36(6):311.e1-311.e13. doi: 10.1016/j.urolonc.2018.03.001. Epub 2018 Mar 27.
3 CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.Front Neurol. 2018 Apr 18;9:255. doi: 10.3389/fneur.2018.00255. eCollection 2018.
4 Changes in the expression of cyclin G2 in esophageal cancer cell and its significance.Tumour Biol. 2014 Apr;35(4):3355-62. doi: 10.1007/s13277-013-1442-3. Epub 2013 Dec 3.
5 MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction.Mol Med Rep. 2016 Jan;13(1):273-80. doi: 10.3892/mmr.2015.4557. Epub 2015 Nov 12.
6 Cyclin G2 Suppresses Glomerulosclerosis by Regulating Canonical Wnt Signalling.Biomed Res Int. 2018 Oct 21;2018:6938482. doi: 10.1155/2018/6938482. eCollection 2018.
7 Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/-catenin signaling.Oncogene. 2016 Sep 8;35(36):4816-27. doi: 10.1038/onc.2016.15. Epub 2016 Feb 15.
8 Effect of cyclin G2 on proliferative ability of SGC-7901 cell.World J Gastroenterol. 2004 May 1;10(9):1357-60. doi: 10.3748/wjg.v10.i9.1357.
9 Cyclin G2 Inhibits the Warburg Effect and Tumour Progression by Suppressing LDHA Phosphorylation in Glioma.Int J Biol Sci. 2019 Jan 1;15(3):544-555. doi: 10.7150/ijbs.30297. eCollection 2019.
10 CCNG2 and CDK4 is associated with insulin resistance in adipose tissue.Surg Obes Relat Dis. 2014 Jul-Aug;10(4):691-6. doi: 10.1016/j.soard.2013.12.011. Epub 2014 Jan 9.
11 Change in expression of cyclin G2 in kidney cancer cell and its significance.Tumour Biol. 2014 Apr;35(4):3177-83. doi: 10.1007/s13277-013-1415-6. Epub 2013 Nov 23.
12 Cyclin G2 dysregulation in human oral cancer.Cancer Res. 2004 Dec 15;64(24):8980-6. doi: 10.1158/0008-5472.CAN-04-1926.
13 Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7.Mol Biol Cell. 2008 Nov;19(11):4968-79. doi: 10.1091/mbc.e08-03-0259. Epub 2008 Sep 10.
14 Genome-wide association analysis implicates the involvement of eight loci with response to tocilizumab for the treatment of rheumatoid arthritis.Pharmacogenomics J. 2013 Jun;13(3):235-41. doi: 10.1038/tpj.2012.8. Epub 2012 Apr 10.
15 MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma.Eur Rev Med Pharmacol Sci. 2019 Dec;23(23):10332-10342. doi: 10.26355/eurrev_201912_19671.
16 Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing.Mol Cancer. 2015 Feb 10;14:36. doi: 10.1186/s12943-015-0301-9.
17 miR-1246 Targets CCNG2 to Enhance Cancer Stemness and Chemoresistance in Oral Carcinomas.Cancers (Basel). 2018 Aug 16;10(8):272. doi: 10.3390/cancers10080272.
18 MicroRNA-93 regulates cyclin G2 expression and plays an oncogenic role in laryngeal squamous cell carcinoma.Int J Oncol. 2015 Jan;46(1):161-74. doi: 10.3892/ijo.2014.2704. Epub 2014 Oct 10.
19 Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.Int J Oncol. 2015 Aug;47(2):473-80. doi: 10.3892/ijo.2015.3028. Epub 2015 Jun 4.
20 The expression of cyclin G in nasopharyngeal carcinoma and its significance.Clin Exp Med. 2012 Mar;12(1):21-4. doi: 10.1007/s10238-011-0142-9. Epub 2011 Jun 19.
21 Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects.Oncogene. 2010 Nov 4;29(44):5957-68. doi: 10.1038/onc.2010.332. Epub 2010 Aug 9.
22 CCNG2 suppressor biological effects on thyroid cancer cell through promotion of CDK2 degradation.Asian Pac J Cancer Prev. 2013;14(10):6165-71. doi: 10.7314/apjcp.2013.14.10.6165.
23 Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.Cell Physiol Biochem. 2017;44(5):1741-1748. doi: 10.1159/000485780. Epub 2017 Dec 6.
24 Cyclin G2 suppresses Wnt/-catenin signaling and inhibits gastric cancer cell growth and migration through Dapper1.J Exp Clin Cancer Res. 2018 Dec 14;37(1):317. doi: 10.1186/s13046-018-0973-2.
25 Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2.Tumour Biol. 2017 Oct;39(10):1010428317712443. doi: 10.1177/1010428317712443.
26 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
27 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
28 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
29 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
30 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
31 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
32 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
33 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
34 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
35 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
36 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
37 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
38 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
39 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
40 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
41 Cotylenin A, a new differentiation inducer, and rapamycin cooperatively inhibit growth of cancer cells through induction of cyclin G2. Cancer Sci. 2008 Aug;99(8):1693-8. doi: 10.1111/j.1349-7006.2008.00867.x.
42 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
43 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
44 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
45 Differential regulation of the p73 cistrome by mammalian target of rapamycin reveals transcriptional programs of mesenchymal differentiation and tumorigenesis. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2076-81. doi: 10.1073/pnas.1011936108. Epub 2011 Jan 18.
46 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
47 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
48 Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model. BMC Urol. 2005 Mar 24;5:5.
49 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
50 Impact of epigallocatechin gallate on gene expression profiles of human hepatocellular carcinoma cell lines BEL7404/ADM and BEL7402/5-FU. Ai Zheng. 2008 Oct;27(10):1056-64.
51 Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012 Dec 15;18(24):6771-83. doi: 10.1158/1078-0432.CCR-12-2347. Epub 2012 Nov 7.
52 Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[alpha]pyrene. Int J Mol Sci. 2018 Nov 17;19(11).
53 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
54 Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J Pharmacol Exp Ther. 2007 Jun;321(3):830-8. doi: 10.1124/jpet.107.119412. Epub 2007 Mar 1.
55 Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem Toxicol. 2017 Oct;108(Pt A):30-42.
56 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
57 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
58 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
59 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
60 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90. doi: 10.1007/s10495-005-6063-x.
61 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.