General Information of Drug Off-Target (DOT) (ID: OTIXBU8H)

DOT Name Polycystin-2 (PKD2)
Synonyms PC2; Autosomal dominant polycystic kidney disease type II protein; Polycystic kidney disease 2 protein; Polycystwin; R48321; Transient receptor potential cation channel subfamily P member 2
Gene Name PKD2
Related Disease
Autosomal dominant polycystic kidney disease ( )
Adult glioblastoma ( )
Advanced cancer ( )
Atrial fibrillation ( )
Autism spectrum disorder ( )
Autosomal dominant polycystic liver disease ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiac failure ( )
Cholangiocarcinoma ( )
Chronic kidney disease ( )
Chronic renal failure ( )
Colorectal carcinoma ( )
Congenital contractural arachnodactyly ( )
Congestive heart failure ( )
Cystic kidney disease ( )
Focal segmental glomerulosclerosis ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatocellular carcinoma ( )
Hydrocephalus ( )
Kidney failure ( )
Laryngeal squamous cell carcinoma ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Neoplasm ( )
Nephropathy ( )
Pancreas disorder ( )
Pheochromocytoma ( )
Polycystic kidney disease 2 ( )
Polycystic liver disease 1 ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal fibrosis ( )
Retinopathy ( )
Triple negative breast cancer ( )
Vascular disease ( )
Fetal growth restriction ( )
Head and neck cancer ( )
Head and neck carcinoma ( )
High blood pressure ( )
Acute kidney injury ( )
Bladder cancer ( )
End-stage renal disease ( )
Familial adenomatous polyposis ( )
Gout ( )
Neuroendocrine neoplasm ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
UniProt ID
PKD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2KLD; 2KLE; 2KQ6; 2Y4Q; 3HRN; 3HRO; 5K47; 5MKE; 5MKF; 5T4D; 6A70; 6D1W; 6T9N; 6T9O; 6WB8
Pfam ID
PF18109 ; PF08016 ; PF20519
Sequence
MVNSSRVQPQQPGDAKRPPAPRAPDPGRLMAGCAAVGASLAAPGGLCEQRGLEIEMQRIR
QAAARDPPAGAAASPSPPLSSCSRQAWSRDNPGFEAEEEEEEVEGEEGGMVVEMDVEWRP
GSRRSAASSAVSSVGARSRGLGGYHGAGHPSGRRRRREDQGPPCPSPVGGGDPLHRHLPL
EGQPPRVAWAERLVRGLRGLWGTRLMEESSTNREKYLKSVLRELVTYLLFLIVLCILTYG
MMSSNVYYYTRMMSQLFLDTPVSKTEKTNFKTLSSMEDFWKFTEGSLLDGLYWKMQPSNQ
TEADNRSFIFYENLLLGVPRIRQLRVRNGSCSIPQDLRDEIKECYDVYSVSSEDRAPFGP
RNGTAWIYTSEKDLNGSSHWGIIATYSGAGYYLDLSRTREETAAQVASLKKNVWLDRGTR
ATFIDFSVYNANINLFCVVRLLVEFPATGGVIPSWQFQPLKLIRYVTTFDFFLAACEIIF
CFFIFYYVVEEILEIRIHKLHYFRSFWNCLDVVIVVLSVVAIGINIYRTSNVEVLLQFLE
DQNTFPNFEHLAYWQIQFNNIAAVTVFFVWIKLFKFINFNRTMSQLSTTMSRCAKDLFGF
AIMFFIIFLAYAQLAYLVFGTQVDDFSTFQECIFTQFRIILGDINFAEIEEANRVLGPIY
FTTFVFFMFFILLNMFLAIINDTYSEVKSDLAQQKAEMELSDLIRKGYHKALVKLKLKKN
TVDDISESLRQGGGKLNFDELRQDLKGKGHTDAEIEAIFTKYDQDGDQELTEHEHQQMRD
DLEKEREDLDLDHSSLPRPMSSRSFPRSLDDSEEDDDEDSGHSSRRRGSISSGVSYEEFQ
VLVRRVDRMEHSIGSIVSKIDAVIVKLEIMERAKLKRREVLGRLLDGVAEDERLGRDSEI
HREQMERLVREELERWESDDAASQISHGLGTPVGLNGQPRPRSSRPSSSQSTEGMEGAGG
NGSSNVHV
Function
Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B. Can also form a functional, homotetrameric ion channel. Functions as a cation channel involved in fluid-flow mechanosensation by the primary cilium in renal epithelium. Functions as outward-rectifying K(+) channel, but is also permeable to Ca(2+), and to a much lesser degree also to Na(+). May contribute to the release of Ca(2+) stores from the endoplasmic reticulum. Together with TRPV4, forms mechano- and thermosensitive channels in cilium. PKD1 and PKD2 may function through a common signaling pathway that is necessary to maintain the normal, differentiated state of renal tubule cells. Acts as a regulator of cilium length, together with PKD1. The dynamic control of cilium length is essential in the regulation of mechanotransductive signaling. The cilium length response creates a negative feedback loop whereby fluid shear-mediated deflection of the primary cilium, which decreases intracellular cAMP, leads to cilium shortening and thus decreases flow-induced signaling. Also involved in left-right axis specification via its role in sensing nodal flow; forms a complex with PKD1L1 in cilia to facilitate flow detection in left-right patterning. Detection of asymmetric nodal flow gives rise to a Ca(2+) signal that is required for normal, asymmetric expression of genes involved in the specification of body left-right laterality.
Tissue Specificity
Detected in fetal and adult kidney . Detected at the thick ascending limb of the loop of Henle, at distal tubules, including the distal convoluted tubule and cortical collecting tubules, with weak staining of the collecting duct . Detected on placenta syncytiotrophoblasts (at protein level) . Strongly expressed in ovary, fetal and adult kidney, testis, and small intestine. Not detected in peripheral leukocytes.
Reactome Pathway
VxPx cargo-targeting to cilium (R-HSA-5620916 )

Molecular Interaction Atlas (MIA) of This DOT

50 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal dominant polycystic kidney disease DISBHWUI Definitive Autosomal dominant [1]
Adult glioblastoma DISVP4LU Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [3]
Atrial fibrillation DIS15W6U Strong Genetic Variation [4]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [5]
Autosomal dominant polycystic liver disease DISJS005 Strong Genetic Variation [6]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Cardiac failure DISDC067 Strong Genetic Variation [8]
Cholangiocarcinoma DIS71F6X Strong Altered Expression [3]
Chronic kidney disease DISW82R7 Strong Biomarker [9]
Chronic renal failure DISGG7K6 Strong Genetic Variation [10]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [11]
Congenital contractural arachnodactyly DISOM1K7 Strong Biomarker [3]
Congestive heart failure DIS32MEA Strong Genetic Variation [8]
Cystic kidney disease DISRT1LM Strong Biomarker [12]
Focal segmental glomerulosclerosis DISJNHH0 Strong Biomarker [13]
Glioblastoma multiforme DISK8246 Strong Biomarker [2]
Glioma DIS5RPEH Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Hydrocephalus DISIZUF7 Strong Biomarker [16]
Kidney failure DISOVQ9P Strong Genetic Variation [17]
Laryngeal squamous cell carcinoma DIS9UUVF Strong Biomarker [18]
leukaemia DISS7D1V Strong Biomarker [14]
Leukemia DISNAKFL Strong Biomarker [14]
Lung adenocarcinoma DISD51WR Strong Biomarker [19]
Neoplasm DISZKGEW Strong Altered Expression [3]
Nephropathy DISXWP4P Strong Genetic Variation [20]
Pancreas disorder DISDH7NI Strong Genetic Variation [21]
Pheochromocytoma DIS56IFV Strong Altered Expression [22]
Polycystic kidney disease 2 DIS4UQIF Strong Autosomal dominant [23]
Polycystic liver disease 1 DIS52T2A Strong Biomarker [24]
Prostate cancer DISF190Y Strong Biomarker [25]
Prostate carcinoma DISMJPLE Strong Biomarker [25]
Renal fibrosis DISMHI3I Strong Biomarker [26]
Retinopathy DISB4B0F Strong Biomarker [27]
Triple negative breast cancer DISAMG6N Strong Altered Expression [28]
Vascular disease DISVS67S Strong Biomarker [27]
Fetal growth restriction DIS5WEJ5 moderate Altered Expression [29]
Head and neck cancer DISBPSQZ moderate Biomarker [18]
Head and neck carcinoma DISOU1DS moderate Biomarker [18]
High blood pressure DISY2OHH moderate Biomarker [30]
Acute kidney injury DISXZG0T Limited Biomarker [31]
Bladder cancer DISUHNM0 Limited Biomarker [32]
End-stage renal disease DISXA7GG Limited Genetic Variation [10]
Familial adenomatous polyposis DISW53RE Limited Altered Expression [33]
Gout DISHC0U7 Limited Genetic Variation [34]
Neuroendocrine neoplasm DISNPLOO Limited Biomarker [35]
Urinary bladder cancer DISDV4T7 Limited Biomarker [32]
Urinary bladder neoplasm DIS7HACE Limited Altered Expression [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 50 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Polycystin-2 (PKD2) increases the response to substance of Paclitaxel. [46]
Capecitabine DMTS85L Approved Polycystin-2 (PKD2) decreases the response to substance of Capecitabine. [46]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Polycystin-2 (PKD2). [36]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Polycystin-2 (PKD2). [37]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Polycystin-2 (PKD2). [38]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Polycystin-2 (PKD2). [39]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Polycystin-2 (PKD2). [40]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Polycystin-2 (PKD2). [41]
Gentamicin DMKINJO Approved Gentamicin increases the expression of Polycystin-2 (PKD2). [42]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Polycystin-2 (PKD2). [43]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Polycystin-2 (PKD2). [44]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Polycystin-2 (PKD2). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation.Neuro Oncol. 2011 Jul;13(7):710-24. doi: 10.1093/neuonc/nor084.
3 lnc-PKD2-2-3, identified by long non-coding RNA expression profiling, is associated with pejorative tumor features and poor prognosis, enhances cancer stemness and may serve as cancer stem-cell marker in cholangiocarcinoma.Int J Oncol. 2019 Jul;55(1):45-58. doi: 10.3892/ijo.2019.4798. Epub 2019 May 6.
4 Leukocyte TRP channel gene expressions inpatients with non-valvular atrial fibrillation.Sci Rep. 2017 Aug 24;7(1):9272. doi: 10.1038/s41598-017-10039-0.
5 Autism-associated protein kinase D2 regulates embryonic cortical neuron development.Biochem Biophys Res Commun. 2019 Nov 12;519(3):626-632. doi: 10.1016/j.bbrc.2019.09.048. Epub 2019 Sep 18.
6 Polycystic liver disease: ductal plate malformation and the primary cilium.Trends Mol Med. 2014 May;20(5):261-70. doi: 10.1016/j.molmed.2014.01.003. Epub 2014 Feb 5.
7 Oncogenic functions of protein kinase D2 and D3 in regulating multiple cancer-related pathways in breast cancer.Cancer Med. 2019 Feb;8(2):729-741. doi: 10.1002/cam4.1938. Epub 2019 Jan 16.
8 Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy.J Mol Cell Cardiol. 2013 May;58:199-208. doi: 10.1016/j.yjmcc.2013.01.015. Epub 2013 Jan 30.
9 Papillary renal cell carcinoma with a somatic mutation in MET in a patient with autosomal dominant polycystic kidney disease.Cancer Genet. 2016 Jan-Feb;209(1-2):11-20. doi: 10.1016/j.cancergen.2015.11.002. Epub 2015 Dec 1.
10 Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019 Sep 12;10(1):4148.
11 Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer.Int J Cancer. 2015 Apr 1;136(7):1515-27. doi: 10.1002/ijc.29140. Epub 2014 Sep 3.
12 Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model.Nat Commun. 2019 Sep 6;10(1):4072. doi: 10.1038/s41467-019-12067-y.
13 TRP channels in kidney disease.Biochim Biophys Acta. 2007 Aug;1772(8):928-36. doi: 10.1016/j.bbadis.2007.02.001. Epub 2007 Feb 12.
14 Protein kinase D2: a versatile player in cancer biology.Oncogene. 2018 Mar;37(10):1263-1278. doi: 10.1038/s41388-017-0052-8. Epub 2017 Dec 20.
15 Protein kinase D2 contributes to TNF--induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3/-catenin pathway in hepatocellular carcinoma.Oncotarget. 2016 Feb 2;7(5):5327-41. doi: 10.18632/oncotarget.6633.
16 Alcohol consumption impairs the ependymal cilia motility in the brain ventricles.Sci Rep. 2017 Oct 20;7(1):13652. doi: 10.1038/s41598-017-13947-3.
17 Autosomal Dominant Polycystic Kidney Disease: A Path Forward.Semin Nephrol. 2015 Nov;35(6):524-37. doi: 10.1016/j.semnephrol.2015.10.002.
18 Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells.Oncol Lett. 2019 Feb;17(2):1953-1961. doi: 10.3892/ol.2018.9752. Epub 2018 Nov 23.
19 High PKD2 predicts poor prognosis in lung adenocarcinoma via promoting Epithelial-mesenchymal Transition.Sci Rep. 2019 Feb 4;9(1):1324. doi: 10.1038/s41598-018-37285-0.
20 Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD.Cell Signal. 2020 Feb;66:109490. doi: 10.1016/j.cellsig.2019.109490. Epub 2019 Dec 2.
21 Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease: Prevalence and Association with PKD2 Gene Mutations.Radiology. 2016 Sep;280(3):762-70. doi: 10.1148/radiol.2016151650. Epub 2016 Apr 5.
22 Differential expression and processing of secretogranin II in relation to the status of pheochromocytoma: implications for the production of the tumoral marker EM66.J Mol Endocrinol. 2012 Feb 6;48(2):115-27. doi: 10.1530/JME-11-0077. Print 2012 Apr.
23 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
24 The TRPP2-dependent channel of renal primary cilia also requires TRPM3.PLoS One. 2019 Mar 18;14(3):e0214053. doi: 10.1371/journal.pone.0214053. eCollection 2019.
25 Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment.J Exp Clin Cancer Res. 2019 Mar 6;38(1):114. doi: 10.1186/s13046-019-1118-y.
26 Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models.Nephrol Dial Transplant. 2006 Aug;21(8):2078-84. doi: 10.1093/ndt/gfl150. Epub 2006 May 23.
27 Systemic treatment with erythropoietin protects the neurovascular unit in a rat model of retinal neurodegeneration.PLoS One. 2014 Jul 11;9(7):e102013. doi: 10.1371/journal.pone.0102013. eCollection 2014.
28 Protein kinases D2 and D3 are novel growth regulators in HCC1806 triple-negative breast cancer cells.Anticancer Res. 2013 Feb;33(2):393-9.
29 iTRAQ-Based Proteomic Analysis of Neonatal Kidney from Offspring of Protein Restricted Rats Reveals Abnormalities in Intraflagellar Transport Proteins.Cell Physiol Biochem. 2017;44(1):185-199. doi: 10.1159/000484626. Epub 2017 Nov 6.
30 TRPP2 associates with STIM1 to regulate cerebral vasoconstriction and enhance high salt intake-induced hypertensive cerebrovascular spasm.Hypertens Res. 2019 Dec;42(12):1894-1904. doi: 10.1038/s41440-019-0324-5. Epub 2019 Sep 20.
31 Altered expression pattern of polycystin-2 in acute and chronic renal tubular diseases.J Am Soc Nephrol. 2002 Jul;13(7):1855-64. doi: 10.1097/01.asn.0000018402.33620.c7.
32 Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M.Cell Mol Life Sci. 2018 Mar;75(5):939-963. doi: 10.1007/s00018-017-2681-z. Epub 2017 Oct 25.
33 circ-PKD2 inhibits carcinogenesis via the miR-204-3p/APC2 axis in oral squamous cell carcinoma.Mol Carcinog. 2019 Oct;58(10):1783-1794. doi: 10.1002/mc.23065. Epub 2019 Jun 17.
34 Integrative Genome-Wide Association Studies of eQTL and GWAS Data for Gout Disease Susceptibility.Sci Rep. 2019 Mar 21;9(1):4981. doi: 10.1038/s41598-019-41434-4.
35 Protein kinase D2 regulates chromogranin A secretion in human BON neuroendocrine tumour cells.Cell Signal. 2008 May;20(5):925-34. doi: 10.1016/j.cellsig.2008.01.003. Epub 2008 Jan 16.
36 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
37 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
38 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
39 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
40 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
41 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
42 Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J. 2004 May;18(7):884-6. doi: 10.1096/fj.03-0687fje. Epub 2004 Mar 4.
43 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
44 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
45 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
46 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.