General Information of Drug Off-Target (DOT) (ID: OT1YXBKC)

DOT Name Monocarboxylate transporter 5 (SLC16A4)
Synonyms MCT 5; Monocarboxylate transporter 4; MCT 4; Solute carrier family 16 member 4
Gene Name SLC16A4
Related Disease
Bone osteosarcoma ( )
Hyperglycemia ( )
Matthew-Wood syndrome ( )
Osteosarcoma ( )
Adenocarcinoma ( )
Alzheimer disease ( )
Breast carcinoma ( )
Clear cell renal carcinoma ( )
Colorectal neoplasm ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Glioma ( )
Hepatocellular carcinoma ( )
Lung adenocarcinoma ( )
Metastatic malignant neoplasm ( )
Multiple sclerosis ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Plasma cell myeloma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Rheumatoid arthritis ( )
Squamous cell carcinoma ( )
Stomach cancer ( )
Thyroid tumor ( )
Type-1/2 diabetes ( )
Carcinoma ( )
Cervical carcinoma ( )
Chronic obstructive pulmonary disease ( )
Head-neck squamous cell carcinoma ( )
Melanoma ( )
Triple negative breast cancer ( )
Adult glioblastoma ( )
Adult lymphoma ( )
B-cell lymphoma ( )
Breast cancer ( )
Colorectal carcinoma ( )
Glioblastoma multiforme ( )
Inflammatory bowel disease ( )
Kidney cancer ( )
Lymphoma ( )
Pancreatic cancer ( )
Pediatric lymphoma ( )
UniProt ID
MOT5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MLKREGKVQPYTKTLDGGWGWMIVIHFFLVNVFVMGMTKTFAIFFVVFQEEFEGTSEQIG
WIGSIMSSLRFCAGPLVAIICDILGEKTTSILGAFVVTGGYLISSWATSIPFLCVTMGLL
PGLGSAFLYQVAAVVTTKYFKKRLALSTAIARSGMGLTFLLAPFTKFLIDLYDWTGALIL
FGAIALNLVPSSMLLRPIHIKSENNSGIKDKGSSLSAHGPEAHATETHCHETEESTIKDS
TTQKAGLPSKNLTVSQNQSEEFYNGPNRNRLLLKSDEESDKVISWSCKQLFDISLFRNPF
FYIFTWSFLLSQLAYFIPTFHLVARAKTLGIDIMDASYLVSVAGILETVSQIISGWVADQ
NWIKKYHYHKSYLILCGITNLLAPLATTFPLLMTYTICFAIFAGGYLALILPVLVDLCRN
STVNRFLGLASFFAGMAVLSGPPIAGWLYDYTQTYNGSFYFSGICYLLSSVSFFFVPLAE
RWKNSLT
Function
Proton-linked monocarboxylate transporter. Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate.

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bone osteosarcoma DIST1004 Definitive Altered Expression [1]
Hyperglycemia DIS0BZB5 Definitive Altered Expression [2]
Matthew-Wood syndrome DISA7HR7 Definitive Altered Expression [3]
Osteosarcoma DISLQ7E2 Definitive Altered Expression [1]
Adenocarcinoma DIS3IHTY Strong Biomarker [4]
Alzheimer disease DISF8S70 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [6]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [7]
Colorectal neoplasm DISR1UCN Strong Altered Expression [8]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Altered Expression [10]
Glioma DIS5RPEH Strong Altered Expression [11]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [12]
Lung adenocarcinoma DISD51WR Strong Altered Expression [13]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [14]
Multiple sclerosis DISB2WZI Strong Altered Expression [15]
Neoplasm DISZKGEW Strong Biomarker [16]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [13]
Osteoarthritis DIS05URM Strong Altered Expression [17]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [18]
Prostate cancer DISF190Y Strong Biomarker [19]
Prostate carcinoma DISMJPLE Strong Biomarker [19]
Renal carcinoma DISER9XT Strong Biomarker [20]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [21]
Rheumatoid arthritis DISTSB4J Strong Biomarker [17]
Squamous cell carcinoma DISQVIFL Strong Biomarker [22]
Stomach cancer DISKIJSX Strong Altered Expression [10]
Thyroid tumor DISLVKMD Strong Biomarker [23]
Type-1/2 diabetes DISIUHAP Strong Biomarker [24]
Carcinoma DISH9F1N moderate Biomarker [22]
Cervical carcinoma DIST4S00 moderate Biomarker [25]
Chronic obstructive pulmonary disease DISQCIRF moderate Altered Expression [26]
Head-neck squamous cell carcinoma DISF7P24 moderate Altered Expression [22]
Melanoma DIS1RRCY moderate Altered Expression [27]
Triple negative breast cancer DISAMG6N moderate Altered Expression [28]
Adult glioblastoma DISVP4LU Disputed Biomarker [29]
Adult lymphoma DISK8IZR Limited Altered Expression [30]
B-cell lymphoma DISIH1YQ Limited Biomarker [31]
Breast cancer DIS7DPX1 Limited Biomarker [6]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [32]
Glioblastoma multiforme DISK8246 Limited Biomarker [33]
Inflammatory bowel disease DISGN23E Limited Biomarker [34]
Kidney cancer DISBIPKM Limited Biomarker [20]
Lymphoma DISN6V4S Limited Altered Expression [30]
Pancreatic cancer DISJC981 Limited Biomarker [35]
Pediatric lymphoma DIS51BK2 Limited Altered Expression [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Monocarboxylate transporter 5 (SLC16A4). [36]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [37]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Monocarboxylate transporter 5 (SLC16A4). [38]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [39]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [40]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Monocarboxylate transporter 5 (SLC16A4). [41]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [42]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Monocarboxylate transporter 5 (SLC16A4). [43]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Monocarboxylate transporter 5 (SLC16A4). [44]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Monocarboxylate transporter 5 (SLC16A4). [45]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [46]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Monocarboxylate transporter 5 (SLC16A4). [44]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Monocarboxylate transporter 5 (SLC16A4). [47]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [48]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Monocarboxylate transporter 5 (SLC16A4). [49]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Monocarboxylate transporter 5 (SLC16A4). [50]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [51]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Monocarboxylate transporter 5 (SLC16A4). [52]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Monocarboxylate transporter 5 (SLC16A4). [53]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [54]
QUERCITRIN DM1DH96 Investigative QUERCITRIN decreases the expression of Monocarboxylate transporter 5 (SLC16A4). [55]
1,6-hexamethylene diisocyanate DMLB3RT Investigative 1,6-hexamethylene diisocyanate affects the expression of Monocarboxylate transporter 5 (SLC16A4). [56]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Monocarboxylate Transporter 4 (MCT4) Overexpression Is Correlated with Poor Prognosis of Osteosarcoma.Med Sci Monit. 2019 Jun 9;25:4278-4284. doi: 10.12659/MSM.912272.
2 Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus.NMR Biomed. 2018 May;31(5):e3910. doi: 10.1002/nbm.3910. Epub 2018 Mar 13.
3 Monocarboxylate Transporters MCT1 and MCT4 Regulate Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells.Pancreas. 2016 Aug;45(7):1036-47. doi: 10.1097/MPA.0000000000000571.
4 Identification of a pyruvate-to-lactate signature in pancreatic intraductal papillary mucinous neoplasms.Pancreatology. 2018 Jan;18(1):46-53. doi: 10.1016/j.pan.2017.11.006. Epub 2017 Nov 14.
5 Role of monocarboxylate transporter 4 in Alzheimer disease.Neurotoxicology. 2020 Jan;76:191-199. doi: 10.1016/j.neuro.2019.11.006. Epub 2019 Nov 16.
6 Vesicular trafficking-related proteins as the potential therapeutic target for breast cancer.Protoplasma. 2020 Mar;257(2):345-352. doi: 10.1007/s00709-019-01462-3. Epub 2019 Dec 11.
7 Monocarboxylate transporters MCT1 and MCT4 are independent prognostic biomarkers for the survival of patients with clear cell renal cell carcinoma and those receiving therapy targeting angiogenesis.Urol Oncol. 2018 Jun;36(6):311.e15-311.e25. doi: 10.1016/j.urolonc.2018.03.014. Epub 2018 Apr 12.
8 Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas.Virchows Arch. 2008 Feb;452(2):139-46. doi: 10.1007/s00428-007-0558-5. Epub 2008 Jan 10.
9 Prognostic value of monocarboxylate transporter 4 in patients with esophageal squamous cell carcinoma.Oncol Rep. 2018 Nov;40(5):2906-2915. doi: 10.3892/or.2018.6706. Epub 2018 Sep 13.
10 MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis.Oncotarget. 2016 Jul 12;7(28):43492-43503. doi: 10.18632/oncotarget.9523.
11 Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner.Oncogene. 2014 Aug 28;33(35):4433-41. doi: 10.1038/onc.2013.390. Epub 2013 Sep 30.
12 Targeted inhibition of MCT4 disrupts intracellular pH homeostasis and confers self-regulated apoptosis on hepatocellular carcinoma.Exp Cell Res. 2019 Nov 1;384(1):111591. doi: 10.1016/j.yexcr.2019.111591. Epub 2019 Aug 31.
13 High expression of monocarboxylate transporter 4 predicts poor prognosis in patients with lung adenocarcinoma. Oncol Lett. 2017 Nov;14(5):5727-5734.
14 Intratumoral lactate metabolism in Barrett's esophagus and adenocarcinoma.Oncotarget. 2017 Apr 4;8(14):22894-22902. doi: 10.18632/oncotarget.15284.
15 Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis.J Clin Invest. 2019 May 21;129(8):3277-3292. doi: 10.1172/JCI124012.
16 Monocarboxylate transporters in cancer.Mol Metab. 2020 Mar;33:48-66. doi: 10.1016/j.molmet.2019.07.006. Epub 2019 Jul 27.
17 Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis.Arthritis Rheumatol. 2015 Nov;67(11):2888-96. doi: 10.1002/art.39270.
18 Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation.Oncotarget. 2015 Oct 20;6(32):33568-86. doi: 10.18632/oncotarget.5598.
19 MCT4 promotes cell proliferation and invasion of castration-resistant prostate cancer PC-3 cell line.EXCLI J. 2019 Mar 21;18:187-194. doi: 10.17179/excli2018-1879. eCollection 2019.
20 Monocarboxylate transporter 1 and monocarboxylate transporter 4 in cancer-endothelial co-culturing microenvironments promote proliferation, migration, and invasion of renal cancer cells.Cancer Cell Int. 2019 Jun 28;19:170. doi: 10.1186/s12935-019-0889-8. eCollection 2019.
21 Non-Invasive Assessment of Lactate Production and Compartmentalization in Renal Cell Carcinomas Using Hyperpolarized (13)C Pyruvate MRI.Cancers (Basel). 2018 Sep 5;10(9):313. doi: 10.3390/cancers10090313.
22 Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer.Front Oncol. 2018 Aug 28;8:324. doi: 10.3389/fonc.2018.00324. eCollection 2018.
23 Oncometabolites as biomarkers in thyroid cancer: a systematic review.Cancer Manag Res. 2019 Feb 25;11:1829-1841. doi: 10.2147/CMAR.S188661. eCollection 2019.
24 The NF-B/miR-425-5p/MCT4 axis: A novel insight into diabetes-induced endothelial dysfunction.Mol Cell Endocrinol. 2020 Jan 15;500:110641. doi: 10.1016/j.mce.2019.110641. Epub 2019 Nov 8.
25 Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix.BMC Cancer. 2014 Oct 8;14:751. doi: 10.1186/1471-2407-14-751.
26 Altered metabolic and transporter characteristics of vastus lateralis in chronic obstructive pulmonary disease.J Appl Physiol (1985). 2008 Sep;105(3):879-86. doi: 10.1152/japplphysiol.90458.2008. Epub 2008 Jul 17.
27 New insight into the role of metabolic reprogramming in melanoma cells harboring BRAF mutations.Biochim Biophys Acta. 2016 Nov;1863(11):2710-2718. doi: 10.1016/j.bbamcr.2016.08.007. Epub 2016 Aug 16.
28 The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms.Int J Cancer. 2018 Jun 15;142(12):2529-2542. doi: 10.1002/ijc.31276. Epub 2018 Feb 7.
29 Lactic acid induces lactate transport and glycolysis/OXPHOS interconversion in glioblastoma.Biochem Biophys Res Commun. 2018 Sep 5;503(2):888-894. doi: 10.1016/j.bbrc.2018.06.092. Epub 2018 Jun 21.
30 Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma.Haematologica. 2017 Jul;102(7):1247-1257. doi: 10.3324/haematol.2016.163030. Epub 2017 Apr 6.
31 Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma - MCT1 as potential target in diffuse large B cell lymphoma.Cell Oncol (Dordr). 2019 Jun;42(3):303-318. doi: 10.1007/s13402-019-00426-2. Epub 2019 Feb 21.
32 The prognostic significance of the expression of monocarboxylate transporter 4 in patients with right- or left-sided colorectal cancer.Asia Pac J Clin Oncol. 2019 Apr;15(2):e49-e55. doi: 10.1111/ajco.13077. Epub 2018 Sep 30.
33 An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications.Am J Cancer Res. 2018 Oct 1;8(10):1967-1976. eCollection 2018.
34 Inhibition of CREB-mediated ZO-1 and activation of NF-B-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function.Cell Prolif. 2019 Nov;52(6):e12673. doi: 10.1111/cpr.12673. Epub 2019 Aug 16.
35 Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer.Carcinogenesis. 2019 Sep 18;40(9):1164-1176. doi: 10.1093/carcin/bgz114.
36 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
37 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
38 Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4050-61.
39 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
40 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
41 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
42 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
43 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
44 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
45 Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006 Dec 1;66(23):11187-93. doi: 10.1158/0008-5472.CAN-06-1274.
46 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
47 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
48 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
49 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
50 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
51 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
52 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
53 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
54 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
55 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
56 Gene profiles of a human alveolar epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: identification of discriminating genetic markers and pathway analysis. Toxicol Lett. 2009 Feb 25;185(1):16-22. doi: 10.1016/j.toxlet.2008.11.017. Epub 2008 Dec 6.