General Information of Drug Off-Target (DOT) (ID: OT2363Z9)

DOT Name Tumor protein p53-inducible nuclear protein 1 (TP53INP1)
Synonyms Stress-induced protein; p53-dependent damage-inducible nuclear protein 1; p53DINP1
Gene Name TP53INP1
Related Disease
Ependymoma ( )
Pancreatic cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Alzheimer disease ( )
Anaplastic large cell lymphoma ( )
Anxiety ( )
Anxiety disorder ( )
B-cell neoplasm ( )
Bone osteosarcoma ( )
Cervical cancer ( )
Cervical carcinoma ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Depression ( )
Gastric cancer ( )
Gastric neoplasm ( )
Glioma ( )
Hepatocellular carcinoma ( )
Mantle cell lymphoma ( )
Metastatic malignant neoplasm ( )
Neuroblastoma ( )
Non-insulin dependent diabetes ( )
Osteosarcoma ( )
Renal cell carcinoma ( )
Stomach cancer ( )
Type-1/2 diabetes ( )
Varicose veins ( )
Colorectal carcinoma ( )
Gastritis ( )
Major depressive disorder ( )
Melanoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Dermatomyositis ( )
Generalized anxiety disorder ( )
Liver cancer ( )
Neoplasm ( )
Small lymphocytic lymphoma ( )
Stroke ( )
UniProt ID
T53I1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF14839
Sequence
MFQRLNKMFVGEVSSSSNQEPEFNEKEDDEWILVDFIDTCTGFSAEEEEEEEDISEESPT
EHPSVFSCLPASLECLADTSDSCFLQFESCPMEESWFITPPPCFTAGGLTTIKVETSPME
NLLIEHPSMSVYAVHNSCPGLSEATRGTDELHSPSSPRVEAQNEMGQHIHCYVAALAAHT
TFLEQPKSFRPSQWIKEHSERQPLNRNSLRRQNLTRDCHPRQVKHNGWVVHQPCPRQYNY
Function
Antiproliferative and proapoptotic protein involved in cell stress response which acts as a dual regulator of transcription and autophagy. Acts as a positive regulator of autophagy. In response to cellular stress or activation of autophagy, relocates to autophagosomes where it interacts with autophagosome-associated proteins GABARAP, GABARAPL1/L2, MAP1LC3A/B/C and regulates autophagy. Acts as an antioxidant and plays a major role in p53/TP53-driven oxidative stress response. Possesses both a p53/TP53-independent intracellular reactive oxygen species (ROS) regulatory function and a p53/TP53-dependent transcription regulatory function. Positively regulates p53/TP53 and p73/TP73 and stimulates their capacity to induce apoptosis and regulate cell cycle. In response to double-strand DNA breaks, promotes p53/TP53 phosphorylation on 'Ser-46' and subsequent apoptosis. Acts as a tumor suppressor by inducing cell death by an autophagy and caspase-dependent mechanism. Can reduce cell migration by regulating the expression of SPARC.
Tissue Specificity Ubiquitously expressed.
Reactome Pathway
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
TP53 Regulates Transcription of Genes Involved in Cytochrome C Release (R-HSA-6803204 )

Molecular Interaction Atlas (MIA) of This DOT

42 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Ependymoma DISUMRNZ Definitive Biomarker [1]
Pancreatic cancer DISJC981 Definitive Biomarker [2]
Prostate cancer DISF190Y Definitive Biomarker [3]
Prostate carcinoma DISMJPLE Definitive Biomarker [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
Anaplastic large cell lymphoma DISP4D1R Strong Altered Expression [5]
Anxiety DISIJDBA Strong Biomarker [6]
Anxiety disorder DISBI2BT Strong Biomarker [6]
B-cell neoplasm DISVY326 Strong Altered Expression [7]
Bone osteosarcoma DIST1004 Strong Biomarker [8]
Cervical cancer DISFSHPF Strong Biomarker [9]
Cervical carcinoma DIST4S00 Strong Biomarker [9]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [10]
Colon cancer DISVC52G Strong Genetic Variation [11]
Colon carcinoma DISJYKUO Strong Genetic Variation [11]
Depression DIS3XJ69 Strong Biomarker [6]
Gastric cancer DISXGOUK Strong Altered Expression [12]
Gastric neoplasm DISOKN4Y Strong Altered Expression [13]
Glioma DIS5RPEH Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Mantle cell lymphoma DISFREOV Strong Biomarker [16]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [17]
Neuroblastoma DISVZBI4 Strong Biomarker [18]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [19]
Osteosarcoma DISLQ7E2 Strong Biomarker [8]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [10]
Stomach cancer DISKIJSX Strong Altered Expression [12]
Type-1/2 diabetes DISIUHAP Strong Biomarker [20]
Varicose veins DISIMBN2 Strong Biomarker [21]
Colorectal carcinoma DIS5PYL0 moderate Altered Expression [22]
Gastritis DIS8G07K moderate Altered Expression [13]
Major depressive disorder DIS4CL3X moderate Genetic Variation [23]
Melanoma DIS1RRCY moderate Biomarker [24]
Breast cancer DIS7DPX1 Limited Altered Expression [25]
Breast carcinoma DIS2UE88 Limited Altered Expression [25]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Limited Biomarker [26]
Dermatomyositis DIS50C5O Limited Biomarker [27]
Generalized anxiety disorder DISPSQCW Limited Genetic Variation [23]
Liver cancer DISDE4BI Limited Biomarker [26]
Neoplasm DISZKGEW Limited Altered Expression [7]
Small lymphocytic lymphoma DIS30POX Limited Altered Expression [28]
Stroke DISX6UHX Limited Biomarker [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
39 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [30]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [31]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [33]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [34]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [35]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [36]
Quercetin DM3NC4M Approved Quercetin increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [37]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [38]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [39]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [40]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [41]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [42]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [43]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [44]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [45]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [46]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [48]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [49]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [50]
Cidofovir DMA13GD Approved Cidofovir affects the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [51]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Lucanthone DMZLBUO Approved Lucanthone increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [52]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [47]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [53]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [54]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [55]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [57]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [59]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [60]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [45]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [61]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [62]
I-BET151 DMYRUH2 Investigative I-BET151 increases the expression of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [63]
------------------------------------------------------------------------------------
⏷ Show the Full List of 39 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [56]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Tumor protein p53-inducible nuclear protein 1 (TP53INP1). [58]
------------------------------------------------------------------------------------

References

1 Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma.Genes Chromosomes Cancer. 2017 Aug;56(8):639-650. doi: 10.1002/gcc.22467. Epub 2017 May 19.
2 A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis.Oncol Rep. 2016 Jan;35(1):518-23. doi: 10.3892/or.2015.4361. Epub 2015 Oct 30.
3 MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1.Eur Rev Med Pharmacol Sci. 2016;20(1):92-100.
4 Alterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice.Iran J Basic Med Sci. 2017 Oct;20(10):1159-1165. doi: 10.22038/IJBMS.2017.9366.
5 Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase-negative anaplastic large cell lymphoma.Hum Pathol. 2014 Oct;45(10):1995-2005. doi: 10.1016/j.humpath.2014.06.012. Epub 2014 Jun 30.
6 Anxiety, Depression, and Pain Symptoms: Associations With the Course of Marijuana Use and Drug Use Consequences Among Urban Primary Care Patients.J Addict Med. 2018 Jan/Feb;12(1):45-52. doi: 10.1097/ADM.0000000000000362.
7 Downregulation of miR-3934-5p enhances A549 cell sensitivity to cisplatin by targeting TP53INP1.Exp Ther Med. 2019 Sep;18(3):1653-1660. doi: 10.3892/etm.2019.7718. Epub 2019 Jul 1.
8 TNF-/miR-155 axis induces the transformation of osteosarcoma cancer stem cells independent of TP53INP1.Gene. 2020 Feb 5;726:144224. doi: 10.1016/j.gene.2019.144224. Epub 2019 Oct 26.
9 MicroRNA-15a-5p down-regulation inhibits cervical cancer by targeting TP53INP1 in vitro.Eur Rev Med Pharmacol Sci. 2019 Oct;23(19):8219-8229. doi: 10.26355/eurrev_201910_19129.
10 Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma.Biochem Biophys Res Commun. 2007 May 18;356(4):864-71. doi: 10.1016/j.bbrc.2007.03.080. Epub 2007 Mar 26.
11 The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells.PLoS One. 2018 Mar 13;13(3):e0192208. doi: 10.1371/journal.pone.0192208. eCollection 2018.
12 Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer.Oncogene. 2017 Sep 7;36(36):5134-5144. doi: 10.1038/onc.2017.121. Epub 2017 May 8.
13 Difference of p53AIP1 mRNA expression in gastric mucosa between patients with gastric cancer and chronic gastritis infected with Helicobacter pylori.J Clin Gastroenterol. 2008 Apr;42(4):351-5. doi: 10.1097/MCG.0b013e318054493e.
14 TP53INP1 3'-UTR functions as a ceRNA in repressing the metastasis of glioma cells by regulating miRNA activity.Biotechnol Lett. 2016 Oct;38(10):1699-707. doi: 10.1007/s10529-016-2159-3. Epub 2016 Jun 24.
15 LncRNA GAS5-mediated miR-1323 promotes tumor progression by targeting TP53INP1 in hepatocellular carcinoma.Onco Targets Ther. 2019 May 21;12:4013-4023. doi: 10.2147/OTT.S209439. eCollection 2019.
16 Targeting EZH1/2 induces cell cycle arrest and inhibits cell proliferation through reactivation of p57(CDKN1C) and TP53INP1 in mantle cell lymphoma.Cancer Biol Med. 2019 Aug;16(3):530-541. doi: 10.20892/j.issn.2095-3941.2018.0380.
17 StarD13 3'-untranslated region functions as a ceRNA for TP53INP1 in prohibiting migration and invasion of breast cancer cells by regulating miR-125b activity.Eur J Cell Biol. 2018 Jan;97(1):23-31. doi: 10.1016/j.ejcb.2017.11.002. Epub 2017 Nov 11.
18 Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1.Exp Ther Med. 2019 Nov;18(5):3729-3736. doi: 10.3892/etm.2019.8007. Epub 2019 Sep 13.
19 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
20 Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract.Br J Pharmacol. 2019 Jan;176(2):212-227. doi: 10.1111/bph.14459. Epub 2018 Sep 3.
21 Inhibitory Neural Regulation of the Ca (2+) Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine.Front Physiol. 2018 Apr 9;9:328. doi: 10.3389/fphys.2018.00328. eCollection 2018.
22 Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer.Mol Cancer. 2018 Jan 30;17(1):16. doi: 10.1186/s12943-018-0767-3.
23 Is the effect of work-related psychosocial exposure on depressive and anxiety disorders short-term, lagged or cumulative?.Int Arch Occup Environ Health. 2020 Jan;93(1):87-104. doi: 10.1007/s00420-019-01466-9. Epub 2019 Aug 3.
24 Anti-metastatic and anti-angiogenic activities of sulfated polysaccharide of Sepiella maindroni ink.Carbohydr Polym. 2013 Jan 2;91(1):403-9. doi: 10.1016/j.carbpol.2012.08.050. Epub 2012 Aug 22.
25 TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer.J Cell Mol Med. 2018 Jul;22(7):3475-3488. doi: 10.1111/jcmm.13625. Epub 2018 Apr 14.
26 MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal.FEBS Lett. 2015 Feb 13;589(4):500-6. doi: 10.1016/j.febslet.2015.01.009. Epub 2015 Jan 17.
27 Efficacy and safety of oral high-trough level tacrolimus in acute/subacute interstitial pneumonia with dermatomyositis.Int J Rheum Dis. 2019 Feb;22(2):303-313. doi: 10.1111/1756-185X.13414. Epub 2018 Nov 5.
28 Expression and regulation of CacyBP/SIP in chronic lymphocytic leukemia cell balances of cell proliferation with apoptosis.J Cancer Res Clin Oncol. 2016 Apr;142(4):741-8. doi: 10.1007/s00432-015-2077-0. Epub 2015 Nov 25.
29 Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations.Int J Neurosci. 2018 Sep;128(9):791-796. doi: 10.1080/00207454.2017.1403915. Epub 2018 Feb 2.
30 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
31 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
32 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
35 Analysis of estrogen agonism and antagonism of tamoxifen, raloxifene, and ICI182780 in endometrial cancer cells: a putative role for the epidermal growth factor receptor ligand amphiregulin. J Soc Gynecol Investig. 2005 Oct;12(7):e55-67.
36 Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010 Jan 31;268(1-2):31-9.
37 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
38 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
39 Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, cIAP2, BCL-XL and survivin. Med Oncol. 2010 Sep;27(3):833-42. doi: 10.1007/s12032-009-9294-9. Epub 2009 Sep 10.
40 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
41 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
42 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
43 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
44 Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 2006 Mar 1;66(5):2765-77.
45 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
46 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
47 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
48 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
49 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
50 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
51 Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells. World J Gastroenterol. 2006 Mar 14;12(10):1597-602. doi: 10.3748/wjg.v12.i10.1597.
52 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
53 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
54 Resveratrol-induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):596-604. doi: 10.1158/1055-9965.EPI-04-0398.
55 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
56 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
57 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
58 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
59 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
60 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
61 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
62 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.
63 Histone deacetylase 2 and N-Myc reduce p53 protein phosphorylation at serine 46 by repressing gene transcription of tumor protein 53-induced nuclear protein 1. Oncotarget. 2014 Jun 30;5(12):4257-68. doi: 10.18632/oncotarget.1991.