General Information of Drug Off-Target (DOT) (ID: OTYDBO4L)

DOT Name Sulfiredoxin-1 (SRXN1)
Synonyms EC 1.8.98.2
Gene Name SRXN1
Related Disease
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Cerebral infarction ( )
Cerebrovascular disease ( )
Clear cell renal carcinoma ( )
Cryptococcosis ( )
Diabetic kidney disease ( )
High blood pressure ( )
Hyperglycemia ( )
Renal cell carcinoma ( )
Breast cancer ( )
Breast carcinoma ( )
Myocardial ischemia ( )
UniProt ID
SRXN1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1XW3; 1XW4; 1YZS; 2B6F; 2RII; 3CYI; 3HY2; 7LJ1
EC Number
1.8.98.2
Sequence
MGLRAGGTLGRAGAGRGAPEGPGPSGGAQGGSIHSGRIAAVHNVPLSVLIRPLPSVLDPA
KVQSLVDTIREDPDSVPPIDVLWIKGAQGGDYFYSFGGCHRYAAYQQLQRETIPAKLVQS
TLSDLRVYLGASTPDLQ
Function
Contributes to oxidative stress resistance by reducing cysteine-sulfinic acid formed under exposure to oxidants in the peroxiredoxins PRDX1, PRDX2, PRDX3 and PRDX4. Does not act on PRDX5 or PRDX6. May catalyze the reduction in a multi-step process by acting both as a specific phosphotransferase and a thioltransferase.
Tissue Specificity Widely expressed with highest levels in kidney, lung, spleen and thymus.
Reactome Pathway
NFE2L2 regulating anti-oxidant/detoxification enzymes (R-HSA-9818027 )

Molecular Interaction Atlas (MIA) of This DOT

13 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Cerebral infarction DISR1WNP Strong Biomarker [3]
Cerebrovascular disease DISAB237 Strong Genetic Variation [4]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [5]
Cryptococcosis DISDYDTK Strong Biomarker [6]
Diabetic kidney disease DISJMWEY Strong Biomarker [7]
High blood pressure DISY2OHH Strong Biomarker [4]
Hyperglycemia DIS0BZB5 Strong Biomarker [7]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [5]
Breast cancer DIS7DPX1 moderate Genetic Variation [8]
Breast carcinoma DIS2UE88 moderate Genetic Variation [8]
Myocardial ischemia DISFTVXF moderate Biomarker [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
58 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Sulfiredoxin-1 (SRXN1). [10]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Sulfiredoxin-1 (SRXN1). [11]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sulfiredoxin-1 (SRXN1). [12]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sulfiredoxin-1 (SRXN1). [13]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Sulfiredoxin-1 (SRXN1). [14]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Sulfiredoxin-1 (SRXN1). [15]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Sulfiredoxin-1 (SRXN1). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Sulfiredoxin-1 (SRXN1). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Sulfiredoxin-1 (SRXN1). [17]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Sulfiredoxin-1 (SRXN1). [18]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Sulfiredoxin-1 (SRXN1). [19]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Sulfiredoxin-1 (SRXN1). [20]
Menadione DMSJDTY Approved Menadione increases the expression of Sulfiredoxin-1 (SRXN1). [21]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Sulfiredoxin-1 (SRXN1). [22]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Sulfiredoxin-1 (SRXN1). [23]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Sulfiredoxin-1 (SRXN1). [24]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Sulfiredoxin-1 (SRXN1). [25]
Etoposide DMNH3PG Approved Etoposide increases the expression of Sulfiredoxin-1 (SRXN1). [26]
Diclofenac DMPIHLS Approved Diclofenac increases the expression of Sulfiredoxin-1 (SRXN1). [27]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Sulfiredoxin-1 (SRXN1). [29]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Sulfiredoxin-1 (SRXN1). [29]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Sulfiredoxin-1 (SRXN1). [29]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Sulfiredoxin-1 (SRXN1). [29]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Sulfiredoxin-1 (SRXN1). [29]
Lindane DMB8CNL Approved Lindane increases the expression of Sulfiredoxin-1 (SRXN1). [30]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Sulfiredoxin-1 (SRXN1). [17]
Ampicillin DMHWE7P Approved Ampicillin decreases the expression of Sulfiredoxin-1 (SRXN1). [31]
Isoniazid DM5JVS3 Approved Isoniazid increases the expression of Sulfiredoxin-1 (SRXN1). [32]
Benzoic acid DMKB9FI Approved Benzoic acid increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Ethacrynic acid DM60QMR Approved Ethacrynic acid increases the expression of Sulfiredoxin-1 (SRXN1). [33]
Flucloxacillin DMNUWST Approved Flucloxacillin increases the expression of Sulfiredoxin-1 (SRXN1). [32]
Amoxicillin DMUYNEI Approved Amoxicillin increases the expression of Sulfiredoxin-1 (SRXN1). [32]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Sulfiredoxin-1 (SRXN1). [34]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Sulfiredoxin-1 (SRXN1). [35]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Sulfiredoxin-1 (SRXN1). [33]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Sulfiredoxin-1 (SRXN1). [33]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Sulfiredoxin-1 (SRXN1). [36]
Phenol DM1QSM3 Phase 2/3 Phenol increases the expression of Sulfiredoxin-1 (SRXN1). [30]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Disulfiram DMCL2OK Phase 2 Trial Disulfiram increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Sulfiredoxin-1 (SRXN1). [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Sulfiredoxin-1 (SRXN1). [37]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Sulfiredoxin-1 (SRXN1). [38]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Sulfiredoxin-1 (SRXN1). [39]
Eugenol DM7US1H Patented Eugenol increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Sulfiredoxin-1 (SRXN1). [40]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Sulfiredoxin-1 (SRXN1). [41]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Sulfiredoxin-1 (SRXN1). [33]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Sulfiredoxin-1 (SRXN1). [42]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Sulfiredoxin-1 (SRXN1). [43]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Sulfiredoxin-1 (SRXN1). [31]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Sulfiredoxin-1 (SRXN1). [44]
2-tert-butylbenzene-1,4-diol DMNXI1E Investigative 2-tert-butylbenzene-1,4-diol decreases the expression of Sulfiredoxin-1 (SRXN1). [33]
methyl salicylate DMKCG8H Investigative methyl salicylate increases the expression of Sulfiredoxin-1 (SRXN1). [28]
2-Propanol, Isopropanol DML5O0H Investigative 2-Propanol, Isopropanol increases the expression of Sulfiredoxin-1 (SRXN1). [28]
Hydroxybenzo(a)pyrene DM9H5EN Investigative Hydroxybenzo(a)pyrene increases the expression of Sulfiredoxin-1 (SRXN1). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 58 Drug(s)

References

1 Maesopsin 4-O-beta-D-glucoside, a natural compound isolated from the leaves of Artocarpus tonkinensis, inhibits proliferation and up-regulates HMOX1, SRXN1 and BCAS3 in acute myeloid leukemia.J Chemother. 2011 Jun;23(3):150-7. doi: 10.1179/joc.2011.23.3.150.
2 Sulfiredoxin May Promote Cervical Cancer Metastasis via Wnt/-Catenin Signaling Pathway.Int J Mol Sci. 2017 Apr 27;18(5):917. doi: 10.3390/ijms18050917.
3 Neuroprotective effects of sulfiredoxin-1 during cerebral ischemia/reperfusion oxidative stress injury in rats.Brain Res Bull. 2017 Jun;132:99-108. doi: 10.1016/j.brainresbull.2017.05.012. Epub 2017 May 24.
4 Genetic Polymorphisms of Transcription Factor NRF2 and of its Host Gene Sulfiredoxin (SRXN1) are Associated with Cerebrovascular Disease in a Finnish Cohort, the TAMRISK Study.Int J Med Sci. 2016 Apr 10;13(5):325-9. doi: 10.7150/ijms.14849. eCollection 2016.
5 Identification and characterization of human leukocyte antigen class I ligands in renal cell carcinoma cells.Proteomics. 2011 Jun;11(12):2528-41. doi: 10.1002/pmic.201000486. Epub 2011 May 18.
6 Sulphiredoxin plays peroxiredoxin-dependent and -independent roles via the HOG signalling pathway in Cryptococcus neoformans and contributes to fungal virulence.Mol Microbiol. 2013 Nov;90(3):630-648. doi: 10.1111/mmi.12388. Epub 2013 Oct 3.
7 Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3.Biochem Biophys Res Commun. 2019 Sep 3;516(4):1137-1144. doi: 10.1016/j.bbrc.2019.06.157. Epub 2019 Jul 6.
8 Genetic polymorphisms and protein expression of NRF2 and Sulfiredoxin predict survival outcomes in breast cancer.Cancer Res. 2012 Nov 1;72(21):5537-46. doi: 10.1158/0008-5472.CAN-12-1474. Epub 2012 Sep 10.
9 Sulfiredoxin-1 enhances cardiac progenitor cell survival against oxidative stress via the upregulation of the ERK/NRF2 signal pathway.Free Radic Biol Med. 2018 Aug 1;123:8-19. doi: 10.1016/j.freeradbiomed.2018.05.060. Epub 2018 May 14.
10 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
11 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
12 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
13 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
14 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
15 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
16 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
17 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
18 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
19 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
20 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
21 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
22 Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020 Jan;28:101321. doi: 10.1016/j.redox.2019.101321. Epub 2019 Sep 5.
23 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
24 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
25 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
26 Comprehensive Landscape of Nrf2 and p53 Pathway Activation Dynamics by Oxidative Stress and DNA Damage. Chem Res Toxicol. 2017 Apr 17;30(4):923-933. doi: 10.1021/acs.chemrestox.6b00322. Epub 2016 Dec 16.
27 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
28 Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci. 2010 Sep;117(1):81-9.
29 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
30 Oxidative stress mechanisms do not discriminate between genotoxic and nongenotoxic liver carcinogens. Chem Res Toxicol. 2015 Aug 17;28(8):1636-46.
31 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
32 Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017 Jul 1;158(1):76-89.
33 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
34 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
35 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
36 The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Med Genomics. 2008 Oct 10;1:49.
37 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
38 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
39 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
40 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
41 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
42 In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food Chem Toxicol. 2021 Jul;153:112261. doi: 10.1016/j.fct.2021.112261. Epub 2021 May 17.
43 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
44 The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009 Jan 15;46(2):220-31.
45 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.