General Information of Drug Off-Target (DOT) (ID: OT7Y8EJ2)

DOT Name Zinc finger protein SNAI2 (SNAI2)
Synonyms Neural crest transcription factor Slug; Protein snail homolog 2
Gene Name SNAI2
Related Disease
Esophageal cancer ( )
Neoplasm of esophagus ( )
Adenocarcinoma ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Calcinosis ( )
Carcinoma ( )
Cholangiocarcinoma ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Epithelial ovarian cancer ( )
Familial tumoral calcinosis ( )
Glioblastoma multiforme ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Metastatic malignant neoplasm ( )
Neuroblastoma ( )
Osteosarcoma ( )
Ovarian cancer ( )
Piebaldism ( )
Prostate neoplasm ( )
Renal cell carcinoma ( )
Squamous cell carcinoma ( )
Thyroid gland carcinoma ( )
Thyroid gland papillary carcinoma ( )
Waardenburg syndrome type 2D ( )
Gastric cancer ( )
Stomach cancer ( )
Triple negative breast cancer ( )
Waardenburg syndrome type 2 ( )
Adult glioblastoma ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Glioma ( )
Non-small-cell lung cancer ( )
Ovarian neoplasm ( )
Waardenburg syndrome ( )
Waardenburg syndrome type 1 ( )
Waardenburg syndrome type 3 ( )
UniProt ID
SNAI2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00096
Sequence
MPRSFLVKKHFNASKKPNYSELDTHTVIISPYLYESYSMPVIPQPEILSSGAYSPITVWT
TAAPFHAQLPNGLSPLSGYSSSLGRVSPPPPSDTSSKDHSGSESPISDEEERLQSKLSDP
HAIEAEKFQCNLCNKTYSTFSGLAKHKQLHCDAQSRKSFSCKYCDKEYVSLGALKMHIRT
HTLPCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPHCNRAFADRSNLRAHLQTHSDVKK
YQCKNCSKTFSRMSLLHKHEESGCCVAH
Function
Transcriptional repressor that modulates both activator-dependent and basal transcription. Involved in the generation and migration of neural crest cells. Plays a role in mediating RAF1-induced transcriptional repression of the TJ protein, occludin (OCLN) and subsequent oncogenic transformation of epithelial cells. Represses BRCA2 expression by binding to its E2-box-containing silencer and recruiting CTBP1 and HDAC1 in breast cells. In epidermal keratinocytes, binds to the E-box in ITGA3 promoter and represses its transcription. Involved in the regulation of ITGB1 and ITGB4 expression and cell adhesion and proliferation in epidermal keratinocytes. Binds to E-box2 domain of BSG and activates its expression during TGFB1-induced epithelial-mesenchymal transition (EMT) in hepatocytes. Represses E-Cadherin/CDH1 transcription via E-box elements. Involved in osteoblast maturation. Binds to RUNX2 and SOC9 promoters and may act as a positive and negative transcription regulator, respectively, in osteoblasts. Binds to CXCL12 promoter via E-box regions in mesenchymal stem cells and osteoblasts. Plays an essential role in TWIST1-induced EMT and its ability to promote invasion and metastasis.
Tissue Specificity
Expressed in most adult human tissues, including spleen, thymus, prostate, testis, ovary, small intestine, colon, heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Not detected in peripheral blood leukocyte. Expressed in the dermis and in all layers of the epidermis, with high levels of expression in the basal layers (at protein level). Expressed in osteoblasts (at protein level). Expressed in mesenchymal stem cells (at protein level). Expressed in breast tumor cells (at protein level).
KEGG Pathway
Hippo sig.ling pathway (hsa04390 )
Adherens junction (hsa04520 )
Reactome Pathway
Regulation of PTEN gene transcription (R-HSA-8943724 )

Molecular Interaction Atlas (MIA) of This DOT

47 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Esophageal cancer DISGB2VN Definitive Biomarker [1]
Neoplasm of esophagus DISOLKAQ Definitive Biomarker [1]
Adenocarcinoma DIS3IHTY Strong Biomarker [2]
Arteriosclerosis DISK5QGC Strong Altered Expression [3]
Atherosclerosis DISMN9J3 Strong Altered Expression [3]
Bone osteosarcoma DIST1004 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Biomarker [6]
Calcinosis DISQP4OR Strong Biomarker [7]
Carcinoma DISH9F1N Strong Biomarker [8]
Cholangiocarcinoma DIS71F6X Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Colorectal neoplasm DISR1UCN Strong Altered Expression [11]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [12]
Familial tumoral calcinosis DISYJZKG Strong Biomarker [7]
Glioblastoma multiforme DISK8246 Strong Altered Expression [13]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [15]
Lung cancer DISCM4YA Strong Altered Expression [16]
Lung carcinoma DISTR26C Strong Altered Expression [16]
Melanoma DIS1RRCY Strong Altered Expression [17]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [18]
Neuroblastoma DISVZBI4 Strong Altered Expression [19]
Osteosarcoma DISLQ7E2 Strong Biomarker [4]
Ovarian cancer DISZJHAP Strong Altered Expression [12]
Piebaldism DISDLDF2 Strong Autosomal dominant [20]
Prostate neoplasm DISHDKGQ Strong Biomarker [21]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [22]
Squamous cell carcinoma DISQVIFL Strong Altered Expression [23]
Thyroid gland carcinoma DISMNGZ0 Strong Altered Expression [24]
Thyroid gland papillary carcinoma DIS48YMM Strong Biomarker [25]
Waardenburg syndrome type 2D DISHVL0O Strong Autosomal recessive [26]
Gastric cancer DISXGOUK moderate Biomarker [27]
Stomach cancer DISKIJSX moderate Biomarker [27]
Triple negative breast cancer DISAMG6N moderate Altered Expression [28]
Waardenburg syndrome type 2 DISVZBEV Supportive Autosomal dominant [26]
Adult glioblastoma DISVP4LU Limited Biomarker [29]
Clear cell renal carcinoma DISBXRFJ Limited Biomarker [30]
Colon cancer DISVC52G Limited Biomarker [31]
Colon carcinoma DISJYKUO Limited Biomarker [31]
Glioma DIS5RPEH Limited Biomarker [32]
Non-small-cell lung cancer DIS5Y6R9 Limited Altered Expression [33]
Ovarian neoplasm DISEAFTY Limited Biomarker [34]
Waardenburg syndrome DISRU41A Limited Autosomal recessive [35]
Waardenburg syndrome type 1 DIS8DBQ5 Limited Biomarker [26]
Waardenburg syndrome type 3 DIS4JF16 Limited Biomarker [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Gefitinib DM15F0X Approved Zinc finger protein SNAI2 (SNAI2) affects the response to substance of Gefitinib. [94]
------------------------------------------------------------------------------------
61 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Zinc finger protein SNAI2 (SNAI2). [36]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [37]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [38]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Zinc finger protein SNAI2 (SNAI2). [39]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [40]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Zinc finger protein SNAI2 (SNAI2). [41]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Zinc finger protein SNAI2 (SNAI2). [42]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Zinc finger protein SNAI2 (SNAI2). [43]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Zinc finger protein SNAI2 (SNAI2). [44]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Zinc finger protein SNAI2 (SNAI2). [45]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Zinc finger protein SNAI2 (SNAI2). [46]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Zinc finger protein SNAI2 (SNAI2). [47]
Testosterone DM7HUNW Approved Testosterone increases the expression of Zinc finger protein SNAI2 (SNAI2). [46]
Triclosan DMZUR4N Approved Triclosan increases the expression of Zinc finger protein SNAI2 (SNAI2). [48]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Zinc finger protein SNAI2 (SNAI2). [49]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Zinc finger protein SNAI2 (SNAI2). [50]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Zinc finger protein SNAI2 (SNAI2). [51]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Zinc finger protein SNAI2 (SNAI2). [52]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Zinc finger protein SNAI2 (SNAI2). [47]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Zinc finger protein SNAI2 (SNAI2). [53]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Zinc finger protein SNAI2 (SNAI2). [54]
Nicotine DMWX5CO Approved Nicotine increases the expression of Zinc finger protein SNAI2 (SNAI2). [55]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Zinc finger protein SNAI2 (SNAI2). [56]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Zinc finger protein SNAI2 (SNAI2). [57]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Zinc finger protein SNAI2 (SNAI2). [58]
Ciprofloxacin XR DM2NLS9 Approved Ciprofloxacin XR decreases the expression of Zinc finger protein SNAI2 (SNAI2). [59]
Ketamine DMT5HA4 Approved Ketamine increases the expression of Zinc finger protein SNAI2 (SNAI2). [60]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Zinc finger protein SNAI2 (SNAI2). [61]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Zinc finger protein SNAI2 (SNAI2). [62]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Zinc finger protein SNAI2 (SNAI2). [63]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [64]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the expression of Zinc finger protein SNAI2 (SNAI2). [65]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Zinc finger protein SNAI2 (SNAI2). [47]
Delphinidin DMS2WIN Phase 2 Delphinidin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [66]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Zinc finger protein SNAI2 (SNAI2). [68]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Zinc finger protein SNAI2 (SNAI2). [69]
Acteoside DM0YHKB Terminated Acteoside decreases the expression of Zinc finger protein SNAI2 (SNAI2). [70]
EMBELIN DMFZO4Y Terminated EMBELIN decreases the expression of Zinc finger protein SNAI2 (SNAI2). [71]
Pifithrin-alpha DM63OD7 Terminated Pifithrin-alpha increases the expression of Zinc finger protein SNAI2 (SNAI2). [72]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Zinc finger protein SNAI2 (SNAI2). [73]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Zinc finger protein SNAI2 (SNAI2). [74]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Zinc finger protein SNAI2 (SNAI2). [75]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Zinc finger protein SNAI2 (SNAI2). [76]
Coumarin DM0N8ZM Investigative Coumarin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [77]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Zinc finger protein SNAI2 (SNAI2). [78]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [79]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Zinc finger protein SNAI2 (SNAI2). [80]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Zinc finger protein SNAI2 (SNAI2). [81]
QUERCITRIN DM1DH96 Investigative QUERCITRIN affects the expression of Zinc finger protein SNAI2 (SNAI2). [82]
Forskolin DM6ITNG Investigative Forskolin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [83]
Nitrobenzanthrone DMN6L70 Investigative Nitrobenzanthrone increases the expression of Zinc finger protein SNAI2 (SNAI2). [84]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Zinc finger protein SNAI2 (SNAI2). [85]
Cordycepin DM72Y01 Investigative Cordycepin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [65]
BRN-3548355 DM4KXT0 Investigative BRN-3548355 increases the expression of Zinc finger protein SNAI2 (SNAI2). [86]
Chrysin DM7V2LG Investigative Chrysin decreases the expression of Zinc finger protein SNAI2 (SNAI2). [87]
gingerol DMNXYSM Investigative gingerol decreases the expression of Zinc finger protein SNAI2 (SNAI2). [88]
MANGIFERIN DMWAF5Z Investigative MANGIFERIN decreases the expression of Zinc finger protein SNAI2 (SNAI2). [89]
Tetramethylbutylphenol DMW9CH2 Investigative Tetramethylbutylphenol increases the expression of Zinc finger protein SNAI2 (SNAI2). [90]
Isoarnebin 4 DM0B7NO Investigative Isoarnebin 4 decreases the expression of Zinc finger protein SNAI2 (SNAI2). [91]
NMS-873 DMYKZ6U Investigative NMS-873 decreases the expression of Zinc finger protein SNAI2 (SNAI2). [92]
HONOKIOL DMJWT3X Investigative HONOKIOL decreases the expression of Zinc finger protein SNAI2 (SNAI2). [93]
------------------------------------------------------------------------------------
⏷ Show the Full List of 61 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Zinc finger protein SNAI2 (SNAI2). [67]
------------------------------------------------------------------------------------

References

1 Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray.Int J Cancer. 2007 Jan 15;120(2):230-42. doi: 10.1002/ijc.22246.
2 SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression.Oncotarget. 2015 Jul 10;6(19):17121-34. doi: 10.18632/oncotarget.2736.
3 Conditional knockout of TFPI-1 in VSMCs of mice accelerates atherosclerosis by enhancing AMOT/YAP pathway.Int J Cardiol. 2017 Feb 1;228:605-614. doi: 10.1016/j.ijcard.2016.11.195. Epub 2016 Nov 12.
4 MicroRNA-124 acts as a tumor-suppressive miRNA by inhibiting the expression of Snail2 in osteosarcoma.Oncol Lett. 2018 Apr;15(4):4979-4987. doi: 10.3892/ol.2018.7994. Epub 2018 Feb 8.
5 Estrogen receptor--miR-1271-SNAI2 feedback loop regulates transforming growth factor--induced breast cancer progression.J Exp Clin Cancer Res. 2019 Mar 1;38(1):109. doi: 10.1186/s13046-019-1112-4.
6 Sphingosine 1-phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells.FASEB J. 2019 Jun;33(6):7180-7191. doi: 10.1096/fj.201801635R. Epub 2019 Mar 7.
7 Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.J Biol Chem. 2018 Mar 9;293(10):3780-3792. doi: 10.1074/jbc.M117.791145. Epub 2018 Jan 22.
8 The miR-203/SNAI2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3/-CATENIN signal pathway.IUBMB Life. 2018 Mar;70(3):224-236. doi: 10.1002/iub.1720. Epub 2018 Feb 1.
9 RNA interference targeting slug increases cholangiocarcinoma cell sensitivity to cisplatin via upregulating PUMA.Int J Mol Sci. 2011 Jan 14;12(1):385-400. doi: 10.3390/ijms12010385.
10 SNAIL- and SLUG-induced side population phenotype of HCT116 human colorectal cancer cells and its regulation by BET inhibitors.Biochem Biophys Res Commun. 2020 Jan 1;521(1):152-157. doi: 10.1016/j.bbrc.2019.10.094. Epub 2019 Oct 22.
11 The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression.J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):106-9. doi: 10.1016/j.jsbmb.2010.01.014. Epub 2010 Feb 6.
12 SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition.Sci Rep. 2019 Jun 5;9(1):8295. doi: 10.1038/s41598-019-44826-8.
13 SLUG Directs the Precursor State of Human Brain Tumor Stem Cells.Cancers (Basel). 2019 Oct 24;11(11):1635. doi: 10.3390/cancers11111635.
14 Np63/SRC/Slug Signaling Axis Promotes Epithelial-to-Mesenchymal Transition in Squamous Cancers.Clin Cancer Res. 2018 Aug 15;24(16):3917-3927. doi: 10.1158/1078-0432.CCR-17-3775. Epub 2018 May 8.
15 Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression.Cancer Res. 2020 Feb 1;80(3):561-575. doi: 10.1158/0008-5472.CAN-19-1117. Epub 2019 Nov 4.
16 Hypoxia-induced Slug SUMOylation enhances lung cancer metastasis.J Exp Clin Cancer Res. 2019 Jan 6;38(1):5. doi: 10.1186/s13046-018-0996-8.
17 STAM-binding protein regulates melanoma metastasis through SLUG stabilization.Biochem Biophys Res Commun. 2018 Dec 9;507(1-4):484-488. doi: 10.1016/j.bbrc.2018.11.068. Epub 2018 Nov 16.
18 G9a and histone deacetylases are crucial for Snail2-mediated E-cadherin repression and metastasis in hepatocellular carcinoma.Cancer Sci. 2019 Nov;110(11):3442-3452. doi: 10.1111/cas.14173. Epub 2019 Sep 19.
19 Prokineticin signaling is required for the maintenance of a de novo population of c-KIT?cells to sustain neuroblastoma progression.Oncogene. 2015 Feb 19;34(8):1019-34. doi: 10.1038/onc.2014.24. Epub 2014 Mar 17.
20 Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A. 2003 Oct 1;122A(2):125-32. doi: 10.1002/ajmg.a.20345.
21 The PCAT3/PCAT9-miR-203-SNAI2 axis functions as a key mediator for prostate tumor growth and progression.Oncotarget. 2018 Jan 12;9(15):12212-12225. doi: 10.18632/oncotarget.24198. eCollection 2018 Feb 23.
22 LncRNA NONHSAT113026 represses renal cell carcinoma tumorigenesis through interacting with NF-B/p50 and SLUG.Biomed Pharmacother. 2019 Oct;118:109382. doi: 10.1016/j.biopha.2019.109382. Epub 2019 Aug 28.
23 Differential BMI1, TWIST1, SNAI2 mRNA expression pattern correlation with malignancy type in a spectrum of common cutaneous malignancies: basal cell carcinoma, squamous cell carcinoma, and melanoma.Clin Transl Oncol. 2017 Apr;19(4):489-497. doi: 10.1007/s12094-016-1555-4. Epub 2016 Oct 7.
24 Lysyl Oxidase (LOX) Transcriptionally Regulates SNAI2 Expression and TIMP4 Secretion in Human Cancers.Clin Cancer Res. 2016 Sep 1;22(17):4491-504. doi: 10.1158/1078-0432.CCR-15-2461. Epub 2016 Mar 30.
25 Down-regulation of 14q32-encoded miRNAs and tumor suppressor role for miR-654-3p in papillary thyroid cancer.Oncotarget. 2017 Feb 7;8(6):9597-9607. doi: 10.18632/oncotarget.14162.
26 SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet. 2002 Dec 1;11(25):3231-6. doi: 10.1093/hmg/11.25.3231.
27 P4HA3 is Epigenetically Activated by Slug in Gastric Cancer and its Deregulation is Associated With Enhanced Metastasis and Poor Survival.Technol Cancer Res Treat. 2018 Jan 1;17:1533033818796485. doi: 10.1177/1533033818796485.
28 cIAP1 regulates the EGFR/Snai2 axis in triple-negative breast cancer cells.Cell Death Differ. 2018 Dec;25(12):2147-2164. doi: 10.1038/s41418-018-0100-0. Epub 2018 Apr 19.
29 Roles of zinc-fingers and homeoboxes 1 during the proliferation, migration, and invasion of glioblastoma cells.Tumour Biol. 2017 Mar;39(3):1010428317694575. doi: 10.1177/1010428317694575.
30 TOX3 inhibits cancer cell migration and invasion via transcriptional regulation of SNAI1 and SNAI2 in clear cell renal cell carcinoma.Cancer Lett. 2019 May 1;449:76-86. doi: 10.1016/j.canlet.2019.02.020. Epub 2019 Feb 14.
31 Modulation of the colon cancer cell phenotype by pro-inflammatory macrophages: A preclinical model of surgery-associated inflammation and tumor recurrence.PLoS One. 2018 Feb 20;13(2):e0192958. doi: 10.1371/journal.pone.0192958. eCollection 2018.
32 The Role Played by SLUG, an Epithelial-Mesenchymal Transition Factor, in Invasion and Therapeutic Resistance of Malignant Glioma.Cell Mol Neurobiol. 2019 Aug;39(6):769-782. doi: 10.1007/s10571-019-00677-5. Epub 2019 Apr 22.
33 Ginsenoside Rg3 promotes the antitumor activity of gefitinib in lung cancer cell lines.Exp Ther Med. 2019 Jan;17(1):953-959. doi: 10.3892/etm.2018.7001. Epub 2018 Nov 21.
34 Systematic analyses reveal long non-coding RNA (PTAF)-mediated promotion of EMT and invasion-metastasis in serous ovarian cancer.Mol Cancer. 2018 Jun 21;17(1):96. doi: 10.1186/s12943-018-0844-7.
35 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
36 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
37 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
38 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
39 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
40 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
41 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
42 Bisphenol A and nonylphenol have the potential to stimulate the migration of ovarian cancer cells by inducing epithelial-mesenchymal transition via an estrogen receptor dependent pathway. Chem Res Toxicol. 2015 Apr 20;28(4):662-71. doi: 10.1021/tx500443p. Epub 2015 Mar 3.
43 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
44 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
45 Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med. 2012 Jul 1;53(1):44-50. doi: 10.1016/j.freeradbiomed.2012.04.031. Epub 2012 May 9.
46 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
47 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
48 Inhibitory effects of 3,3'-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol. 2017 Nov;109(Pt 1):284-295. doi: 10.1016/j.fct.2017.08.037. Epub 2017 Aug 24.
49 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
50 Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact. 2018 Dec 25;296:1-8. doi: 10.1016/j.cbi.2018.08.020. Epub 2018 Aug 18.
51 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
52 Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol. 2015 Nov 1;98(1):51-68. doi: 10.1016/j.bcp.2015.08.105. Epub 2015 Aug 24.
53 WNT7A/-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene. 2015 Jun;34(26):3452-62. doi: 10.1038/onc.2014.277. Epub 2014 Sep 1.
54 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
55 Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL. Toxicol Appl Pharmacol. 2013 Feb 1;266(3):459-69.
56 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
57 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
58 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
59 Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chem Biol Interact. 2016 Apr 25;250:1-11.
60 Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-1. Am J Physiol Renal Physiol. 2017 Oct 1;313(4):F961-F972. doi: 10.1152/ajprenal.00686.2016. Epub 2017 Mar 22.
61 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
62 Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate. 2006 Jun 15;66(9):911-20. doi: 10.1002/pros.20325.
63 Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One. 2011 Jan 31;6(1):e16530. doi: 10.1371/journal.pone.0016530.
64 Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling. Chem Biol Interact. 2009 Oct 7;181(2):263-71. doi: 10.1016/j.cbi.2009.06.012. Epub 2009 Jun 30.
65 Cordycepin Inhibits Triple-Negative Breast Cancer Cell Migration and Invasion by Regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol. 2022 Jun 14;12:898583. doi: 10.3389/fonc.2022.898583. eCollection 2022.
66 Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018 Jun;33(6):640-649. doi: 10.1002/tox.22548. Epub 2018 Feb 16.
67 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
68 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
69 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
70 Verbascoside inhibits the epithelial-mesenchymal transition of prostate cancer cells through high-mobility group box 1/receptor for advanced glycation end-products/TGF- pathway. Environ Toxicol. 2021 Jun;36(6):1080-1089. doi: 10.1002/tox.23107. Epub 2021 Feb 1.
71 Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways. PLoS One. 2014 Apr 2;9(4):e92161.
72 The vicious cycle between ferritinophagy and ROS production triggered EMT inhibition of gastric cancer cells was through p53/AKT/mTor pathway. Chem Biol Interact. 2020 Sep 1;328:109196. doi: 10.1016/j.cbi.2020.109196. Epub 2020 Jul 18.
73 Low dose of bisphenol a modulates ovarian cancer gene expression profile and promotes epithelial to mesenchymal transition via canonical Wnt pathway. Toxicol Sci. 2018 Aug 1;164(2):527-538.
74 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
75 Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.
76 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
77 A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22553. doi: 10.1002/jbt.22553. Epub 2020 Jun 24.
78 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
79 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
80 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
81 Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012 Jul 20;287(30):25292-302.
82 Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch Med Res. 2014 Aug;45(6):445-54.
83 GLI inhibitors overcome Erlotinib resistance in human pancreatic cancer cells by modulating E-cadherin. J Chemother. 2019 May;31(3):141-149. doi: 10.1080/1120009X.2019.1584422. Epub 2019 Apr 14.
84 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol. 2022 Oct;38(5):865-887. doi: 10.1007/s10565-021-09612-1. Epub 2021 May 25.
85 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
86 The cigarette smoke components induced the cell proliferation and epithelial to mesenchymal transition via production of reactive oxygen species in endometrial adenocarcinoma cells. Food Chem Toxicol. 2018 Nov;121:657-665. doi: 10.1016/j.fct.2018.09.023. Epub 2018 Sep 17.
87 Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol. 2014 Jan;34(1):105-12. doi: 10.1002/jat.2941. Epub 2013 Oct 10.
88 6-Gingerol suppresses tumor cell metastasis by increasing YAP(ser127) phosphorylation in renal cell carcinoma. J Biochem Mol Toxicol. 2021 Jan;35(1):e22609. doi: 10.1002/jbt.22609. Epub 2020 Sep 14.
89 Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and -catenin signaling pathway. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):180-90. doi: 10.1016/j.taap.2013.05.011. Epub 2013 May 22.
90 Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells. Food Chem Toxicol. 2016 Jul;93:58-65. doi: 10.1016/j.fct.2016.04.026. Epub 2016 May 1.
91 Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation. Chem Biol Interact. 2023 Sep 1;382:110588. doi: 10.1016/j.cbi.2023.110588. Epub 2023 Jun 1.
92 Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol. 2018 Oct;233(10):7148-7164. doi: 10.1002/jcp.26639. Epub 2018 Apr 25.
93 Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancer. Cell Biol Toxicol. 2023 Oct;39(5):1873-1896. doi: 10.1007/s10565-021-09673-2. Epub 2022 Jan 1.
94 Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med. 2011 Apr 15;183(8):1071-9. doi: 10.1164/rccm.201009-1440OC. Epub 2010 Oct 29.