General Information of Drug Off-Target (DOT) (ID: OTU1KZPV)

DOT Name 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2)
Synonyms AMPK subunit alpha-2; EC 2.7.11.1; Acetyl-CoA carboxylase kinase; ACACA kinase; Hydroxymethylglutaryl-CoA reductase kinase; HMGCR kinase; EC 2.7.11.31
Gene Name PRKAA2
Related Disease
Advanced cancer ( )
Alzheimer disease ( )
Aplasia cutis congenita ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cardiac failure ( )
Cardiomyopathy ( )
Colon cancer ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Corpus callosum, agenesis of ( )
Diabetic kidney disease ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatocellular carcinoma ( )
Hyperglycemia ( )
Hyperlipidemia ( )
Idiopathic cardiomyopathy ( )
Liver cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Metabolic disorder ( )
Metastatic malignant neoplasm ( )
Non-alcoholic fatty liver disease ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate carcinoma ( )
Pulmonary fibrosis ( )
Stomach cancer ( )
Stroke ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Acute myelogenous leukaemia ( )
Colon carcinoma ( )
High blood pressure ( )
Melanoma ( )
Adult glioblastoma ( )
Prostate cancer ( )
Triple negative breast cancer ( )
UniProt ID
AAPK2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2H6D; 2LTU; 2YZA; 3AQV; 4CFE; 4CFF; 4ZHX; 5EZV; 5ISO; 6B1U; 6B2E; 6BX6; 7MYJ
EC Number
2.7.11.1; 2.7.11.31
Pfam ID
PF16579 ; PF21147 ; PF00069
Sequence
MAEKQKHDGRVKIGHYVLGDTLGVGTFGKVKIGEHQLTGHKVAVKILNRQKIRSLDVVGK
IKREIQNLKLFRHPHIIKLYQVISTPTDFFMVMEYVSGGELFDYICKHGRVEEMEARRLF
QQILSAVDYCHRHMVVHRDLKPENVLLDAHMNAKIADFGLSNMMSDGEFLRTSCGSPNYA
APEVISGRLYAGPEVDIWSCGVILYALLCGTLPFDDEHVPTLFKKIRGGVFYIPEYLNRS
VATLLMHMLQVDPLKRATIKDIREHEWFKQDLPSYLFPEDPSYDANVIDDEAVKEVCEKF
ECTESEVMNSLYSGDPQDQLAVAYHLIIDNRRIMNQASEFYLASSPPSGSFMDDSAMHIP
PGLKPHPERMPPLIADSPKARCPLDALNTTKPKSLAVKKAKWHLGIRSQSKPYDIMAEVY
RAMKQLDFEWKVVNAYHLRVRRKNPVTGNYVKMSLQLYLVDNRSYLLDFKSIDDEVVEQR
SGSSTPQRSCSAAGLHRPRSSFDSTTAESHSLSGSLTGSLTGSTLSSVSPRLGSHTMDFF
EMCASLITTLAR
Function
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. Involved in insulin receptor/INSR internalization. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2. Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation. In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes. In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1. In that process also activates WDR45/WIPI4. Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation. AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it. May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1. Plays an important role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes, in response to glucose starvation. Can inhibit the non-autophagy complex by phosphorylating PIK3C3 and can activate the pro-autophagy complex by phosphorylating BECN1. Upon glucose starvation, promotes ARF6 activation in a kinase-independent manner leading to cell migration. Upon glucose deprivation mediates the phosphorylation of ACSS2 at 'Ser-659', which exposes the nuclear localization signal of ACSS2, required for its interaction with KPNA1 and nuclear translocation.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
Autophagy - animal (hsa04140 )
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Apelin sig.ling pathway (hsa04371 )
Tight junction (hsa04530 )
Circadian rhythm (hsa04710 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Oxytocin sig.ling pathway (hsa04921 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Alcoholic liver disease (hsa04936 )
Hypertrophic cardiomyopathy (hsa05410 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Macroautophagy (R-HSA-1632852 )
AMPK inhibits chREBP transcriptional activation activity (R-HSA-163680 )
Carnitine metabolism (R-HSA-200425 )
Activation of PPARGC1A (PGC-1alpha) by phosphorylation (R-HSA-2151209 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Lipophagy (R-HSA-9613354 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Nuclear events mediated by NFE2L2 (R-HSA-9759194 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Aplasia cutis congenita DISMDAYM Strong Biomarker [3]
Arteriosclerosis DISK5QGC Strong Genetic Variation [4]
Atherosclerosis DISMN9J3 Strong Genetic Variation [4]
Bladder cancer DISUHNM0 Strong Altered Expression [5]
Breast cancer DIS7DPX1 Strong Altered Expression [1]
Breast carcinoma DIS2UE88 Strong Altered Expression [1]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [6]
Cardiac failure DISDC067 Strong Biomarker [7]
Cardiomyopathy DISUPZRG Strong Genetic Variation [8]
Colon cancer DISVC52G Strong Biomarker [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Congestive heart failure DIS32MEA Strong Biomarker [7]
Corpus callosum, agenesis of DISO9P40 Strong Biomarker [3]
Diabetic kidney disease DISJMWEY Strong Biomarker [11]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [12]
Gastric cancer DISXGOUK Strong Biomarker [13]
Glioblastoma multiforme DISK8246 Strong Altered Expression [14]
Glioma DIS5RPEH Strong Biomarker [15]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [16]
Hyperglycemia DIS0BZB5 Strong Biomarker [8]
Hyperlipidemia DIS61J3S Strong Altered Expression [17]
Idiopathic cardiomyopathy DISUGBZL Strong Biomarker [18]
Liver cancer DISDE4BI Strong Biomarker [6]
Lung cancer DISCM4YA Strong Altered Expression [1]
Lung carcinoma DISTR26C Strong Altered Expression [1]
Metabolic disorder DIS71G5H Strong Biomarker [19]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [20]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [21]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [22]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [23]
Osteoarthritis DIS05URM Strong Biomarker [24]
Ovarian cancer DISZJHAP Strong Biomarker [12]
Ovarian neoplasm DISEAFTY Strong Biomarker [12]
Prostate carcinoma DISMJPLE Strong Biomarker [25]
Pulmonary fibrosis DISQKVLA Strong Altered Expression [26]
Stomach cancer DISKIJSX Strong Biomarker [13]
Stroke DISX6UHX Strong Therapeutic [27]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [5]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [5]
Acute myelogenous leukaemia DISCSPTN moderate Biomarker [28]
Colon carcinoma DISJYKUO moderate Biomarker [9]
High blood pressure DISY2OHH moderate Biomarker [29]
Melanoma DIS1RRCY Disputed Biomarker [30]
Adult glioblastoma DISVP4LU Limited Altered Expression [14]
Prostate cancer DISF190Y Limited Biomarker [25]
Triple negative breast cancer DISAMG6N Limited Altered Expression [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Temozolomide DMKECZD Approved 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2) affects the response to substance of Temozolomide. [50]
DTI-015 DMXZRW0 Approved 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2) affects the response to substance of DTI-015. [50]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [32]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [33]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [34]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [35]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [36]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [37]
Vitamin B3 DMQVRZH Approved Vitamin B3 increases the activity of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [39]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [40]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [47]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [48]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [49]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
8 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Capsaicin DMGMF6V Approved Capsaicin increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [38]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [41]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [42]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [43]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [44]
Taxifolin DMQJSF9 Preclinical Taxifolin decreases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [45]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [46]
schisandrin A DMWQ480 Investigative schisandrin A decreases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines.Acta Pharmacol Sin. 2020 Jan;41(1):110-118. doi: 10.1038/s41401-019-0290-0. Epub 2019 Sep 12.
2 Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients.Metab Brain Dis. 2020 Jan;35(1):201-213. doi: 10.1007/s11011-019-00497-y. Epub 2019 Dec 13.
3 Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome.Free Radic Biol Med. 2019 Apr;134:119-132. doi: 10.1016/j.freeradbiomed.2019.01.011. Epub 2019 Jan 10.
4 AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism.J Clin Endocrinol Metab. 2020 Jan 1;105(1):dgz020. doi: 10.1210/clinem/dgz020.
5 BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells.Cancer Med. 2019 Aug;8(10):4792-4805. doi: 10.1002/cam4.2385. Epub 2019 Jun 28.
6 LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway.Cancer Cell Int. 2019 Mar 18;19:60. doi: 10.1186/s12935-019-0778-1. eCollection 2019.
7 BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1 signaling in heart failure mice.Arch Med Sci. 2019 Jan;15(1):214-222. doi: 10.5114/aoms.2018.81037. Epub 2018 Dec 30.
8 Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function.Metabolism. 2020 Jan;102:154002. doi: 10.1016/j.metabol.2019.154002. Epub 2019 Nov 9.
9 AMPK2 knockout enhances tumour inflammation through exacerbated liver injury and energy deprivation-associated AMPK1 activation.J Cell Mol Med. 2019 Mar;23(3):1687-1697. doi: 10.1111/jcmm.13978. Epub 2019 Jan 12.
10 DT-13 inhibited the proliferation of colorectal cancer via glycolytic metabolism and AMPK/mTOR signaling pathway.Phytomedicine. 2019 Feb 15;54:120-131. doi: 10.1016/j.phymed.2018.09.003. Epub 2018 Sep 14.
11 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress.Toxicol Appl Pharmacol. 2019 May 1;370:93-105. doi: 10.1016/j.taap.2019.03.007. Epub 2019 Mar 12.
12 Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance.Biochem Biophys Res Commun. 2019 Feb 5;509(2):373-378. doi: 10.1016/j.bbrc.2018.12.127. Epub 2018 Dec 25.
13 Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer.Int J Oncol. 2019 May;54(5):1625-1638. doi: 10.3892/ijo.2019.4753. Epub 2019 Mar 18.
14 DNA-PKcs is activated under nutrient starvation and activates Akt, MST1, FoxO3a, and NDR1.Biochem Biophys Res Commun. 2020 Jan 15;521(3):668-673. doi: 10.1016/j.bbrc.2019.10.133. Epub 2019 Nov 1.
15 Baicalein Induces Autophagy and Apoptosis through AMPK Pathway in Human Glioma Cells.Am J Chin Med. 2019;47(6):1405-1418. doi: 10.1142/S0192415X19500721. Epub 2019 Sep 5.
16 Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis.Hepatology. 2019 Jul;70(1):215-230. doi: 10.1002/hep.30602. Epub 2019 Apr 26.
17 Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPAR signaling cascade of lipid metabolism.J Nutr Biochem. 2019 Aug;70:174-184. doi: 10.1016/j.jnutbio.2019.05.006. Epub 2019 May 25.
18 Comparative phenotypic assessment of cardiac pathology, physiology, and gene expression in C3H/HeJ, C57BL/6J, and B6C3F1/J mice.Toxicol Pathol. 2010 Oct;38(6):923-42. doi: 10.1177/0192623310382864.
19 Effects of AMPK on Apoptosis and Energy Metabolism of Gastric Smooth Muscle Cells in Rats with Diabetic Gastroparesis.Cell Biochem Biophys. 2019 Jun;77(2):165-177. doi: 10.1007/s12013-019-00870-9. Epub 2019 Apr 9.
20 The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer.Mol Cell. 2018 Jan 4;69(1):87-99.e7. doi: 10.1016/j.molcel.2017.11.025. Epub 2017 Dec 14.
21 L-Carnitine counteracts in vitro fructose-induced hepatic steatosis through targeting oxidative stress markers.J Endocrinol Invest. 2020 Apr;43(4):493-503. doi: 10.1007/s40618-019-01134-2. Epub 2019 Nov 8.
22 Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.J Ethnopharmacol. 2020 Feb 10;248:112326. doi: 10.1016/j.jep.2019.112326. Epub 2019 Oct 19.
23 Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPK signaling in STK11 mutant lung cancer.Autophagy. 2020 Apr;16(4):659-671. doi: 10.1080/15548627.2019.1634945. Epub 2019 Jun 28.
24 15-Lipoxygenase-1 in osteoblasts promotes TGF-1 expression via inhibiting autophagy in human osteoarthritis.Biomed Pharmacother. 2020 Jan;121:109548. doi: 10.1016/j.biopha.2019.109548. Epub 2019 Nov 5.
25 The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer.Gene. 2019 Feb 20;686:220-227. doi: 10.1016/j.gene.2018.11.048. Epub 2018 Nov 16.
26 Wedelolactone Attenuates Pulmonary Fibrosis Partly Through Activating AMPK and Regulating Raf-MAPKs Signaling Pathway.Front Pharmacol. 2019 Mar 5;10:151. doi: 10.3389/fphar.2019.00151. eCollection 2019.
27 Effects of metformin in experimental stroke.Stroke. 2010 Nov;41(11):2645-52. doi: 10.1161/STROKEAHA.110.589697. Epub 2010 Sep 16.
28 LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4/AMPK/WNT5A signaling pathway.Hematol Oncol. 2019 Oct;37(4):474-482. doi: 10.1002/hon.2651. Epub 2019 Aug 5.
29 Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway.Hypertens Res. 2019 Jul;42(7):960-969. doi: 10.1038/s41440-019-0212-z. Epub 2019 Jan 21.
30 Panduratin A induces protective autophagy in melanoma via the AMPK and mTOR pathway.Phytomedicine. 2018 Mar 15;42:144-151. doi: 10.1016/j.phymed.2018.03.027. Epub 2018 Mar 15.
31 AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer.Breast Cancer Res. 2019 Feb 21;21(1):29. doi: 10.1186/s13058-019-1107-2.
32 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
33 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
34 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
35 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
36 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
37 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
38 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
39 Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E120-7. doi: 10.1152/ajpendo.00542.2003. Epub 2004 Jan 28.
40 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
41 SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008 Jul 18;283(29):20015-26. doi: 10.1074/jbc.M802187200. Epub 2008 May 14.
42 Activation of autophagy rescues amiodarone-induced apoptosis of lung epithelial cells and pulmonary toxicity in rats. Toxicol Sci. 2013 Nov;136(1):193-204. doi: 10.1093/toxsci/kft168. Epub 2013 Aug 2.
43 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
44 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
45 Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One. 2013 May 14;8(5):e63354. doi: 10.1371/journal.pone.0063354. Print 2013.
46 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
47 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
48 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
49 Dibutyl phthalate induces epithelial-mesenchymal transition of renal tubular epithelial cells via the Ang II/AMPK2/Cx43 signaling pathway. Toxicology. 2023 Aug 1;494:153584. doi: 10.1016/j.tox.2023.153584. Epub 2023 Jun 24.
50 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.