General Information of Drug Off-Target (DOT) (ID: OT1OG4QZ)

DOT Name 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1)
Synonyms AMPK subunit beta-1; AMPKb
Gene Name PRKAB1
Related Disease
Glioblastoma multiforme ( )
Advanced cancer ( )
Alzheimer disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cardiac failure ( )
Colon cancer ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Gastric neoplasm ( )
Hepatocellular carcinoma ( )
Hereditary diffuse gastric adenocarcinoma ( )
High blood pressure ( )
Hyperglycemia ( )
Hyperlipidemia ( )
Liver cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Metabolic disorder ( )
Myocardial infarction ( )
Non-alcoholic fatty liver disease ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Parkinson disease ( )
Prostate carcinoma ( )
Pulmonary fibrosis ( )
Stomach cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Acute myelogenous leukaemia ( )
Aplasia cutis congenita ( )
Corpus callosum, agenesis of ( )
Glioma ( )
Diabetic kidney disease ( )
Melanoma ( )
Adult glioblastoma ( )
Clear cell renal carcinoma ( )
Colon carcinoma ( )
Prostate cancer ( )
Renal cell carcinoma ( )
Triple negative breast cancer ( )
UniProt ID
AAKB1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4CFE; 4CFF; 4ZHX; 5EZV; 5ISO; 6B1U; 6C9F; 6C9G; 6C9H; 6C9J; 7MYJ
Pfam ID
PF16561 ; PF04739
Sequence
MGNTSSERAALERHGGHKTPRRDSSGGTKDGDRPKILMDSPEDADLFHSEEIKAPEKEEF
LAWQHDLEVNDKAPAQARPTVFRWTGGGKEVYLSGSFNNWSKLPLTRSHNNFVAILDLPE
GEHQYKFFVDGQWTHDPSEPIVTSQLGTVNNIIQVKKTDFEVFDALMVDSQKCSDVSELS
SSPPGPYHQEPYVCKPEERFRAPPILPPHLLQVILNKDTGISCDPALLPEPNHVMLNHLY
ALSIKDGVMVLSATHRYKKKYVTTLLYKPI
Function
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Apelin sig.ling pathway (hsa04371 )
Tight junction (hsa04530 )
Circadian rhythm (hsa04710 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Oxytocin sig.ling pathway (hsa04921 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Alcoholic liver disease (hsa04936 )
Hypertrophic cardiomyopathy (hsa05410 )
Reactome Pathway
Macroautophagy (R-HSA-1632852 )
Activation of PPARGC1A (PGC-1alpha) by phosphorylation (R-HSA-2151209 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Lipophagy (R-HSA-9613354 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

50 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Glioblastoma multiforme DISK8246 Definitive Altered Expression [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Alzheimer disease DISF8S70 Strong Biomarker [3]
Arteriosclerosis DISK5QGC Strong Genetic Variation [4]
Atherosclerosis DISMN9J3 Strong Genetic Variation [4]
Bladder cancer DISUHNM0 Strong Altered Expression [5]
Breast cancer DIS7DPX1 Strong Altered Expression [2]
Breast carcinoma DIS2UE88 Strong Altered Expression [2]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [6]
Cardiac failure DISDC067 Strong Biomarker [7]
Colon cancer DISVC52G Strong Altered Expression [8]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [9]
Congestive heart failure DIS32MEA Strong Biomarker [7]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [10]
Gastric cancer DISXGOUK Strong Biomarker [11]
Gastric neoplasm DISOKN4Y Strong Biomarker [12]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Hereditary diffuse gastric adenocarcinoma DISUIBYS Strong Biomarker [12]
High blood pressure DISY2OHH Strong Biomarker [14]
Hyperglycemia DIS0BZB5 Strong Biomarker [15]
Hyperlipidemia DIS61J3S Strong Altered Expression [16]
Liver cancer DISDE4BI Strong Biomarker [6]
Lung cancer DISCM4YA Strong Altered Expression [2]
Lung carcinoma DISTR26C Strong Altered Expression [2]
Metabolic disorder DIS71G5H Strong Biomarker [17]
Myocardial infarction DIS655KI Strong Altered Expression [7]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [18]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [19]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [20]
Osteoarthritis DIS05URM Strong Biomarker [21]
Ovarian cancer DISZJHAP Strong Biomarker [10]
Ovarian neoplasm DISEAFTY Strong Biomarker [10]
Parkinson disease DISQVHKL Strong Altered Expression [22]
Prostate carcinoma DISMJPLE Strong Biomarker [23]
Pulmonary fibrosis DISQKVLA Strong Altered Expression [24]
Stomach cancer DISKIJSX Strong Biomarker [11]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [5]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [5]
Acute myelogenous leukaemia DISCSPTN moderate Biomarker [25]
Aplasia cutis congenita DISMDAYM moderate Biomarker [26]
Corpus callosum, agenesis of DISO9P40 moderate Biomarker [26]
Glioma DIS5RPEH moderate Biomarker [27]
Diabetic kidney disease DISJMWEY Disputed Biomarker [28]
Melanoma DIS1RRCY Disputed Biomarker [29]
Adult glioblastoma DISVP4LU Limited Altered Expression [1]
Clear cell renal carcinoma DISBXRFJ Limited Biomarker [30]
Colon carcinoma DISJYKUO Limited Altered Expression [8]
Prostate cancer DISF190Y Limited Biomarker [23]
Renal cell carcinoma DISQZ2X8 Limited Biomarker [30]
Triple negative breast cancer DISAMG6N Limited Altered Expression [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 50 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Deoxycholic acid DM3GYAL Approved 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) decreases the response to substance of Deoxycholic acid. [44]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [33]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [34]
Quercetin DM3NC4M Approved Quercetin increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [35]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [36]
Etoposide DMNH3PG Approved Etoposide increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [37]
Ifosfamide DMCT3I8 Approved Ifosfamide affects the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [32]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [32]
Colchicine DM2POTE Approved Colchicine decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [37]
Hydroxyurea DMOQVU9 Approved Hydroxyurea increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [37]
Adenine DMZLHKJ Approved Adenine decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [37]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [39]
Dioscin DM5H2W9 Preclinical Dioscin increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [42]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [36]
Morin DM2OGZ5 Investigative Morin decreases the expression of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fenofibrate DMFKXDY Approved Fenofibrate increases the phosphorylation of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [38]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1). [40]
------------------------------------------------------------------------------------

References

1 DNA-PKcs is activated under nutrient starvation and activates Akt, MST1, FoxO3a, and NDR1.Biochem Biophys Res Commun. 2020 Jan 15;521(3):668-673. doi: 10.1016/j.bbrc.2019.10.133. Epub 2019 Nov 1.
2 Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines.Acta Pharmacol Sin. 2020 Jan;41(1):110-118. doi: 10.1038/s41401-019-0290-0. Epub 2019 Sep 12.
3 Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients.Metab Brain Dis. 2020 Jan;35(1):201-213. doi: 10.1007/s11011-019-00497-y. Epub 2019 Dec 13.
4 AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism.J Clin Endocrinol Metab. 2020 Jan 1;105(1):dgz020. doi: 10.1210/clinem/dgz020.
5 BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells.Cancer Med. 2019 Aug;8(10):4792-4805. doi: 10.1002/cam4.2385. Epub 2019 Jun 28.
6 LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway.Cancer Cell Int. 2019 Mar 18;19:60. doi: 10.1186/s12935-019-0778-1. eCollection 2019.
7 BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1 signaling in heart failure mice.Arch Med Sci. 2019 Jan;15(1):214-222. doi: 10.5114/aoms.2018.81037. Epub 2018 Dec 30.
8 A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells.Sci Rep. 2018 Feb 28;8(1):3770. doi: 10.1038/s41598-018-22090-6.
9 DT-13 inhibited the proliferation of colorectal cancer via glycolytic metabolism and AMPK/mTOR signaling pathway.Phytomedicine. 2019 Feb 15;54:120-131. doi: 10.1016/j.phymed.2018.09.003. Epub 2018 Sep 14.
10 Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance.Biochem Biophys Res Commun. 2019 Feb 5;509(2):373-378. doi: 10.1016/j.bbrc.2018.12.127. Epub 2018 Dec 25.
11 Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer.Int J Oncol. 2019 May;54(5):1625-1638. doi: 10.3892/ijo.2019.4753. Epub 2019 Mar 18.
12 A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients.PLoS One. 2011 Feb 18;6(2):e16694. doi: 10.1371/journal.pone.0016694.
13 Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis.Hepatology. 2019 Jul;70(1):215-230. doi: 10.1002/hep.30602. Epub 2019 Apr 26.
14 Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway.Hypertens Res. 2019 Jul;42(7):960-969. doi: 10.1038/s41440-019-0212-z. Epub 2019 Jan 21.
15 Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver.PLoS One. 2019 Feb 27;14(2):e0211568. doi: 10.1371/journal.pone.0211568. eCollection 2019.
16 Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPAR signaling cascade of lipid metabolism.J Nutr Biochem. 2019 Aug;70:174-184. doi: 10.1016/j.jnutbio.2019.05.006. Epub 2019 May 25.
17 Effects of AMPK on Apoptosis and Energy Metabolism of Gastric Smooth Muscle Cells in Rats with Diabetic Gastroparesis.Cell Biochem Biophys. 2019 Jun;77(2):165-177. doi: 10.1007/s12013-019-00870-9. Epub 2019 Apr 9.
18 L-Carnitine counteracts in vitro fructose-induced hepatic steatosis through targeting oxidative stress markers.J Endocrinol Invest. 2020 Apr;43(4):493-503. doi: 10.1007/s40618-019-01134-2. Epub 2019 Nov 8.
19 Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.J Ethnopharmacol. 2020 Feb 10;248:112326. doi: 10.1016/j.jep.2019.112326. Epub 2019 Oct 19.
20 Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPK signaling in STK11 mutant lung cancer.Autophagy. 2020 Apr;16(4):659-671. doi: 10.1080/15548627.2019.1634945. Epub 2019 Jun 28.
21 15-Lipoxygenase-1 in osteoblasts promotes TGF-1 expression via inhibiting autophagy in human osteoarthritis.Biomed Pharmacother. 2020 Jan;121:109548. doi: 10.1016/j.biopha.2019.109548. Epub 2019 Nov 5.
22 Cypermethrin Activates Autophagosome Formation Albeit Inhibits Autophagy Owing to Poor Lysosome Quality: Relevance to Parkinson's Disease.Neurotox Res. 2018 Feb;33(2):377-387. doi: 10.1007/s12640-017-9800-3. Epub 2017 Aug 24.
23 The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer.Gene. 2019 Feb 20;686:220-227. doi: 10.1016/j.gene.2018.11.048. Epub 2018 Nov 16.
24 Wedelolactone Attenuates Pulmonary Fibrosis Partly Through Activating AMPK and Regulating Raf-MAPKs Signaling Pathway.Front Pharmacol. 2019 Mar 5;10:151. doi: 10.3389/fphar.2019.00151. eCollection 2019.
25 LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4/AMPK/WNT5A signaling pathway.Hematol Oncol. 2019 Oct;37(4):474-482. doi: 10.1002/hon.2651. Epub 2019 Aug 5.
26 Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome.Free Radic Biol Med. 2019 Apr;134:119-132. doi: 10.1016/j.freeradbiomed.2019.01.011. Epub 2019 Jan 10.
27 Baicalein Induces Autophagy and Apoptosis through AMPK Pathway in Human Glioma Cells.Am J Chin Med. 2019;47(6):1405-1418. doi: 10.1142/S0192415X19500721. Epub 2019 Sep 5.
28 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress.Toxicol Appl Pharmacol. 2019 May 1;370:93-105. doi: 10.1016/j.taap.2019.03.007. Epub 2019 Mar 12.
29 Panduratin A induces protective autophagy in melanoma via the AMPK and mTOR pathway.Phytomedicine. 2018 Mar 15;42:144-151. doi: 10.1016/j.phymed.2018.03.027. Epub 2018 Mar 15.
30 Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2.Int J Biol Sci. 2019 Jan 1;15(3):617-627. doi: 10.7150/ijbs.29689. eCollection 2019.
31 AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer.Breast Cancer Res. 2019 Feb 21;21(1):29. doi: 10.1186/s13058-019-1107-2.
32 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 2011 Apr 21;6(4):e19198. doi: 10.1371/journal.pone.0019198.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
37 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
38 AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-B pathway. Environ Toxicol. 2016 Jul;31(7):866-76. doi: 10.1002/tox.22097. Epub 2014 Dec 24.
39 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
40 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
41 Molecular mechanism and inhibitory targets of dioscin in HepG2 cells. Food Chem Toxicol. 2018 Oct;120:143-154.
42 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
43 Molecular mechanism of anti-cancerous potential of Morin extracted from mulberry in Hela cells. Food Chem Toxicol. 2018 Feb;112:466-475. doi: 10.1016/j.fct.2017.07.002. Epub 2017 Jul 6.
44 Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Carcinogenesis. 2002 Dec;23(12):2063-80. doi: 10.1093/carcin/23.12.2063.