General Information of Drug Off-Target (DOT) (ID: OTNIZPEA)

DOT Name Cyclic AMP-dependent transcription factor ATF-2 (ATF2)
Synonyms
cAMP-dependent transcription factor ATF-2; Activating transcription factor 2; Cyclic AMP-responsive element-binding protein 2; CREB-2; cAMP-responsive element-binding protein 2; HB16; cAMP response element-binding protein CRE-BP1
Gene Name ATF2
Related Disease
Melanoma ( )
Neuroblastoma ( )
Acute myelogenous leukaemia ( )
Adenocarcinoma ( )
Adult lymphoma ( )
Advanced cancer ( )
Alzheimer disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Benign neoplasm ( )
Bone osteosarcoma ( )
Breast neoplasm ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Crohn disease ( )
Depression ( )
Glaucoma/ocular hypertension ( )
Glioma ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Lymphoma ( )
Neoplasm ( )
Non-alcoholic fatty liver disease ( )
Osteosarcoma ( )
Pancreatic cancer ( )
Parkinson disease ( )
Pediatric lymphoma ( )
Pick disease ( )
Renal cell carcinoma ( )
Skin neoplasm ( )
Small lymphocytic lymphoma ( )
Squamous cell carcinoma ( )
Synovial sarcoma ( )
Thyroid gland carcinoma ( )
Type-1/2 diabetes ( )
Urinary bladder neoplasm ( )
Metastatic malignant neoplasm ( )
Nasopharyngeal carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Rheumatoid arthritis ( )
Hepatitis C virus infection ( )
High blood pressure ( )
UniProt ID
ATF2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1BHI; 1T2K; 4H36; 6ZQS; 6ZR5
Pfam ID
PF00170
Sequence
MKFKLHVNSARQYKDLWNMSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFGPARN
DSVIVADQTPTPTRFLKNCEEVGLFNELASPFENEFKKASEDDIKKMPLDLSPLATPIIR
SKIEEPSVVETTHQDSPLPHPESTTSDEKEVPLAQTAQPTSAIVRPASLQVPNVLLTSSD
SSVIIQQAVPSPTSSTVITQAPSSNRPIVPVPGPFPLLLHLPNGQTMPVAIPASITSSNV
HVPAAVPLVRPVTMVPSVPGIPGPSSPQPVQSEAKMRLKAALTQQHPPVTNGDTVKGHGS
GLVRTQSEESRPQSLQQPATSTTETPASPAHTTPQTQSTSGRRRRAANEDPDEKRRKFLE
RNRAAASRCRQKRKVWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAHKDCPV
TAMQKKSGYHTADKDDSSEDISVPSSPHTEAIQHSSVSTSNGVSSTSKAEAVATSVLTQM
ADQSTEPALSQIVMAPSSQSQPSGS
Function
Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro. In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type.
Tissue Specificity Ubiquitously expressed, with more abundant expression in the brain.
KEGG Pathway
MAPK sig.ling pathway (hsa04010 )
cGMP-PKG sig.ling pathway (hsa04022 )
PI3K-Akt sig.ling pathway (hsa04151 )
Longevity regulating pathway (hsa04211 )
Adrenergic sig.ling in cardiomyocytes (hsa04261 )
TNF sig.ling pathway (hsa04668 )
Thermogenesis (hsa04714 )
Dopaminergic sy.pse (hsa04728 )
Insulin secretion (hsa04911 )
Estrogen sig.ling pathway (hsa04915 )
Thyroid hormone synthesis (hsa04918 )
Glucagon sig.ling pathway (hsa04922 )
Aldosterone synthesis and secretion (hsa04925 )
Relaxin sig.ling pathway (hsa04926 )
Cortisol synthesis and secretion (hsa04927 )
Parathyroid hormone synthesis, secretion and action (hsa04928 )
Cushing syndrome (hsa04934 )
Growth hormone synthesis, secretion and action (hsa04935 )
Prion disease (hsa05020 )
Cocaine addiction (hsa05030 )
Amphetamine addiction (hsa05031 )
Alcoholism (hsa05034 )
Hepatitis B (hsa05161 )
Human cytomegalovirus infection (hsa05163 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Viral carcinogenesis (hsa05203 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
HATs acetylate histones (R-HSA-3214847 )
Circadian Clock (R-HSA-400253 )
Activation of the AP-1 family of transcription factors (R-HSA-450341 )
TP53 Regulates Transcription of DNA Repair Genes (R-HSA-6796648 )
Regulation of PTEN gene transcription (R-HSA-8943724 )
Estrogen-dependent gene expression (R-HSA-9018519 )
NGF-stimulated transcription (R-HSA-9031628 )
Response of EIF2AK4 (GCN2) to amino acid deficiency (R-HSA-9633012 )
Heme signaling (R-HSA-9707616 )
Transcriptional activation of mitochondrial biogenesis (R-HSA-2151201 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Melanoma DIS1RRCY Definitive Biomarker [1]
Neuroblastoma DISVZBI4 Definitive Altered Expression [2]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [3]
Adenocarcinoma DIS3IHTY Strong Altered Expression [4]
Adult lymphoma DISK8IZR Strong Genetic Variation [5]
Advanced cancer DISAT1Z9 Strong Altered Expression [6]
Alzheimer disease DISF8S70 Strong Altered Expression [7]
Arteriosclerosis DISK5QGC Strong Biomarker [8]
Atherosclerosis DISMN9J3 Strong Biomarker [8]
Benign neoplasm DISDUXAD Strong Biomarker [9]
Bone osteosarcoma DIST1004 Strong Genetic Variation [10]
Breast neoplasm DISNGJLM Strong Genetic Variation [11]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [12]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [13]
Crohn disease DIS2C5Q8 Strong Genetic Variation [14]
Depression DIS3XJ69 Strong Biomarker [15]
Glaucoma/ocular hypertension DISLBXBY Strong Biomarker [16]
Glioma DIS5RPEH Strong Biomarker [17]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [18]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [19]
Lung cancer DISCM4YA Strong Altered Expression [20]
Lung carcinoma DISTR26C Strong Altered Expression [20]
Lung neoplasm DISVARNB Strong Altered Expression [11]
Lymphoma DISN6V4S Strong Genetic Variation [5]
Neoplasm DISZKGEW Strong Biomarker [21]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [22]
Osteosarcoma DISLQ7E2 Strong Genetic Variation [10]
Pancreatic cancer DISJC981 Strong Biomarker [13]
Parkinson disease DISQVHKL Strong Biomarker [23]
Pediatric lymphoma DIS51BK2 Strong Genetic Variation [5]
Pick disease DISP6X50 Strong Biomarker [24]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [12]
Skin neoplasm DIS16DDV Strong Biomarker [25]
Small lymphocytic lymphoma DIS30POX Strong Biomarker [26]
Squamous cell carcinoma DISQVIFL Strong Altered Expression [27]
Synovial sarcoma DISEZJS7 Strong Biomarker [28]
Thyroid gland carcinoma DISMNGZ0 Strong Altered Expression [29]
Type-1/2 diabetes DISIUHAP Strong Altered Expression [30]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [21]
Metastatic malignant neoplasm DIS86UK6 moderate Altered Expression [31]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [32]
Prostate cancer DISF190Y moderate Biomarker [33]
Prostate carcinoma DISMJPLE moderate Biomarker [33]
Rheumatoid arthritis DISTSB4J moderate Genetic Variation [34]
Hepatitis C virus infection DISQ0M8R Limited Biomarker [35]
High blood pressure DISY2OHH Limited Biomarker [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cyclic AMP-dependent transcription factor ATF-2 (ATF2) decreases the response to substance of Cisplatin. [66]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [37]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [42]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [43]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [48]
Sevoflurane DMC9O43 Approved Sevoflurane increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [51]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [54]
NCX-4016 DMOX1CU Phase 2 NCX-4016 affects the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [55]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [57]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [60]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [61]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid increases the phosphorylation of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [63]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [38]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [39]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [40]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [41]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [44]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [45]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [46]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [47]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [49]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [45]
Sertraline DM0FB1J Approved Sertraline increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [50]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the activity of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [52]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [53]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [58]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [59]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [41]
Microcystin-LR DMTMLRN Investigative Microcystin-LR increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [62]
OXYBENZONE DMMZYX6 Investigative OXYBENZONE increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [64]
Linalool DMGZQ5P Investigative Linalool increases the expression of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
PIPERINE DMYEAB1 Phase 1/2 PIPERINE decreases the localization of Cyclic AMP-dependent transcription factor ATF-2 (ATF2). [56]
------------------------------------------------------------------------------------

References

1 PKC phosphorylation regulates the mitochondrial translocation of ATF2 in ischemia-induced neurodegeneration.BMC Neurosci. 2018 Nov 29;19(1):76. doi: 10.1186/s12868-018-0479-z.
2 The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation.Mol Cell Biol. 2004 Sep;24(17):7514-23. doi: 10.1128/MCB.24.17.7514-7523.2004.
3 Genome-wide characterization of lncRNAs in acute myeloid leukemia.Brief Bioinform. 2018 Jul 20;19(4):627-635. doi: 10.1093/bib/bbx007.
4 p38MAPK family isoform p38 and activating transcription factor 2 are associated with the malignant phenotypes and poor prognosis of patients with ovarian adenocarcinoma.Pathol Res Pract. 2017 Oct;213(10):1282-1288. doi: 10.1016/j.prp.2017.08.003. Epub 2017 Aug 25.
5 Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2.Oncogene. 2014 Feb 20;33(8):1027-36. doi: 10.1038/onc.2013.28. Epub 2013 Feb 18.
6 MiR-657/ATF2 Signaling Pathway Has a Critical Role in Spatholobus suberectus Dunn Extract-Induced Apoptosis in U266 and U937 Cells.Cancers (Basel). 2019 Jan 28;11(2):150. doi: 10.3390/cancers11020150.
7 Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis.Neuroscience. 2005;133(2):437-51. doi: 10.1016/j.neuroscience.2005.02.029.
8 Protein Kinase C Via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6C(hi) Cells Contributes to Atherosclerosis.Circulation. 2018 Nov 20;138(21):2395-2412. doi: 10.1161/CIRCULATIONAHA.118.034083.
9 Oxidative stress and MAPK involved into ATF2 expression in immortalized human urothelial cells treated by arsenic.Arch Toxicol. 2013 Jun;87(6):981-9. doi: 10.1007/s00204-013-1058-9. Epub 2013 Apr 17.
10 Identification of biomarkers associated with the recurrence of osteosarcoma using ceRNA regulatory network analysis.Int J Mol Med. 2019 Apr;43(4):1723-1733. doi: 10.3892/ijmm.2019.4108. Epub 2019 Feb 25.
11 Infrequent mutations of the activating transcription factor-2 gene in human lung cancer, neuroblastoma and breast cancer.Int J Oncol. 2002 Mar;20(3):527-31.
12 ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma.J Exp Clin Cancer Res. 2016 Jul 4;35(1):108. doi: 10.1186/s13046-016-0383-2.
13 The activating transcription factor 2: an influencer of cancer progression.Mutagenesis. 2019 Dec 19;34(5-6):375-389. doi: 10.1093/mutage/gez041.
14 Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2.PLoS One. 2013 Nov 5;8(11):e77773. doi: 10.1371/journal.pone.0077773. eCollection 2013.
15 ATF2, a member of the CREB/ATF family of transcription factors, in chronic stress and consequent to antidepressant treatment: animal models and human post-mortem brains.Neuropsychopharmacology. 2004 Mar;29(3):589-97. doi: 10.1038/sj.npp.1300357.
16 Regulation of cell death and survival pathways in experimental glaucoma.Exp Eye Res. 2007 Aug;85(2):250-8. doi: 10.1016/j.exer.2007.04.011. Epub 2007 May 13.
17 MiR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells.J Neurooncol. 2015 Jan;121(1):63-72. doi: 10.1007/s11060-014-1607-y. Epub 2014 Sep 26.
18 Activating transcription factor-2 in survival mechanisms in head and neck carcinoma cells.Head Neck. 2011 Nov;33(11):1586-99. doi: 10.1002/hed.21648. Epub 2010 Dec 28.
19 Silencing activating transcription factor 2 promotes the anticancer activity of sorafenib in hepatocellular carcinoma cells.Mol Med Rep. 2018 Jun;17(6):8053-8060. doi: 10.3892/mmr.2018.8921. Epub 2018 Apr 23.
20 MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2.Eur Rev Med Pharmacol Sci. 2018 Sep;22(17):5554-5561. doi: 10.26355/eurrev_201809_15818.
21 ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signaling.Endocr Connect. 2018 Dec 1;7(12):1397-1408. doi: 10.1530/EC-18-0364.
22 Dual regulation of HMGB1 by combined JNK1/2-ATF2 axis with miR-200 family in nonalcoholic steatohepatitis in mice.FASEB J. 2018 May;32(5):2722-2734. doi: 10.1096/fj.201700875R. Epub 2018 Jan 3.
23 Activation of the ATF2/CREB-PGC-1 pathway by metformin leads to dopaminergic neuroprotection.Oncotarget. 2017 Jul 25;8(30):48603-48618. doi: 10.18632/oncotarget.18122.
24 Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies.Curr Alzheimer Res. 2005 Jan;2(1):3-18. doi: 10.2174/1567205052772713.
25 ATF2 - at the crossroad of nuclear and cytosolic functions.J Cell Sci. 2012 Jun 15;125(Pt 12):2815-24. doi: 10.1242/jcs.095000. Epub 2012 Jun 8.
26 Molecular basis of aggressive disease in chronic lymphocytic leukemia patients with 11q deletion and trisomy 12 chromosomal abnormalities.Int J Mol Med. 2007 Oct;20(4):461-9.
27 Overexpression of phosphorylated-ATF2 and STAT3 in cutaneous squamous cell carcinoma, Bowen's disease and basal cell carcinoma.J Dermatol Sci. 2008 Sep;51(3):210-5. doi: 10.1016/j.jdermsci.2008.04.008. Epub 2008 Jun 10.
28 Activating transcription factor 2 in mesenchymal tumors.Hum Pathol. 2014 Feb;45(2):276-84. doi: 10.1016/j.humpath.2013.09.003. Epub 2013 Nov 27.
29 Role of JNK/ATF-2 pathway in inhibition of thrombospondin-1 (TSP-1) expression and apoptosis mediated by doxorubicin and camptothecin in FTC-133 cells.Biochim Biophys Acta. 2011 May;1813(5):695-703. doi: 10.1016/j.bbamcr.2011.02.004. Epub 2011 Feb 17.
30 Ubiquitin fold modifier 1 activates NF-B pathway by down-regulating LZAP expression in the macrophage of diabetic mouse model.Biosci Rep. 2020 Jan 31;40(1):BSR20191672. doi: 10.1042/BSR20191672.
31 A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells.Mol Ther Nucleic Acids. 2017 Sep 15;8:370-382. doi: 10.1016/j.omtn.2017.07.005. Epub 2017 Jul 8.
32 Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro.J Gen Virol. 2008 Nov;89(Pt 11):2833-2842. doi: 10.1099/vir.0.2008/003392-0.
33 SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression.J Exp Clin Cancer Res. 2018 Jul 11;37(1):145. doi: 10.1186/s13046-018-0809-0.
34 Rheumatoid arthritis reprograms circadian output pathways.Arthritis Res Ther. 2019 Feb 6;21(1):47. doi: 10.1186/s13075-019-1825-y.
35 Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression.Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10388-93. doi: 10.1073/pnas.1525022113. Epub 2016 Aug 31.
36 Activation of cardiac c-Jun NH(2)-terminal kinases and p38-mitogen-activated protein kinases with abrupt changes in hemodynamic load.Hypertension. 2001 May;37(5):1222-8. doi: 10.1161/01.hyp.37.5.1222.
37 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
38 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
39 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
40 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
41 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
42 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
43 Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosome-positive acute lymphoblastic leukaemia. J Cell Mol Med. 2018 Mar;22(3):1614-1626.
44 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
45 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
46 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
47 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
48 p38 MAPK/PP2Ac/TTP pathway on the connection of TNF- and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis. 2013 Apr;34(4):818-27. doi: 10.1093/carcin/bgs409. Epub 2013 Jan 3.
49 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
50 Sertraline induces endoplasmic reticulum stress in hepatic cells. Toxicology. 2014 Aug 1;322:78-88. doi: 10.1016/j.tox.2014.05.007. Epub 2014 May 24.
51 Sevoflurane-mediated activation of p38-mitogen-activated stresskinase is independent of apoptosis in Jurkat T-cells. Anesth Analg. 2008 Apr;106(4):1150-60, table of contents. doi: 10.1213/ane.0b013e3181683d37.
52 Resveratrol stimulates cyclic AMP response element mediated gene transcription. Mol Nutr Food Res. 2016 Feb;60(2):256-65. doi: 10.1002/mnfr.201500607. Epub 2015 Oct 28.
53 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
54 Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res. 2001 Sep 1;61(17):6569-76.
55 Nitric oxide-donating aspirin inhibits colon cancer cell growth via mitogen-activated protein kinase activation. J Pharmacol Exp Ther. 2006 Jan;316(1):25-34. doi: 10.1124/jpet.105.091363. Epub 2005 Sep 16.
56 Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol. 2004 Dec 20;4(14):1795-803. doi: 10.1016/j.intimp.2004.08.005.
57 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
58 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
59 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
60 Inhibition of PP2A and the consequent activation of JNK/c-Jun are involved in tributyltin-induced apoptosis in human amnionic cells. Environ Toxicol. 2013 Jul;28(7):390-400. doi: 10.1002/tox.20730. Epub 2011 May 27.
61 Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway. Toxicol Lett. 2009 Dec 15;191(2-3):140-8. doi: 10.1016/j.toxlet.2009.08.016. Epub 2009 Aug 29.
62 Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2). Environ Toxicol. 2017 Mar;32(3):890-903. doi: 10.1002/tox.22289. Epub 2016 Jul 9.
63 Nanomolar levels of PAHs in extracts from urban air induce MAPK signaling in HepG2 cells. Toxicol Lett. 2014 Aug 17;229(1):25-32. doi: 10.1016/j.toxlet.2014.06.013. Epub 2014 Jun 6.
64 Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology. 2023 Jan 15;484:153413. doi: 10.1016/j.tox.2022.153413. Epub 2022 Dec 26.
65 Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010 Jan 31;268(1-2):19-24. doi: 10.1016/j.tox.2009.11.013. Epub 2009 Nov 14.
66 The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J Biol Chem. 2003 Jun 6;278(23):20582-92. doi: 10.1074/jbc.M210992200. Epub 2003 Mar 27.