General Information of Drug Off-Target (DOT) (ID: OTR7NMRJ)

DOT Name Fructose-2,6-bisphosphatase TIGAR (TIGAR)
Synonyms EC 3.1.3.46; TP53-induced glycolysis and apoptosis regulator; TP53-induced glycolysis regulatory phosphatase
Gene Name TIGAR
Related Disease
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
Adult glioblastoma ( )
Adult lymphoma ( )
Adult T-cell leukemia/lymphoma ( )
Advanced cancer ( )
Alzheimer disease ( )
Breast carcinoma ( )
Cerebral infarction ( )
Cerebral palsy ( )
Chronic pancreatitis ( )
Clear cell renal carcinoma ( )
Colonic neoplasm ( )
Dementia ( )
Epilepsy ( )
Esophageal squamous cell carcinoma ( )
Fanconi anemia complementation group A ( )
Fanconi's anemia ( )
Hepatocellular carcinoma ( )
Intervertebral disc degeneration ( )
Isolated cleft palate ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lymphoma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Obesity ( )
Pancreas disorder ( )
Pediatric lymphoma ( )
Retinoblastoma ( )
Small lymphocytic lymphoma ( )
Stroke ( )
T-cell lymphoma ( )
Ulcerative colitis ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Hypoglycemia ( )
Liver cancer ( )
Primary cutaneous T-cell lymphoma ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Lewy body dementia ( )
Motor neurone disease ( )
Nasopharyngeal carcinoma ( )
Pancreatitis ( )
Parkinson disease ( )
Stomach cancer ( )
UniProt ID
TIGAR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3DCY
EC Number
3.1.3.46
Pfam ID
PF00300
Sequence
MARFALTVVRHGETRFNKEKIIQGQGVDEPLSETGFKQAAAAGIFLNNVKFTHAFSSDLM
RTKQTMHGILERSKFCKDMTVKYDSRLRERKYGVVEGKALSELRAMAKAAREECPVFTPP
GGETLDQVKMRGIDFFEFLCQLILKEADQKEQFSQGSPSNCLETSLAEIFPLGKNHSSKV
NSDSGIPGLAASVLVVSHGAYMRSLFDYFLTDLKCSLPATLSRSELMSVTPNTGMSLFII
NFEEGREVKPTVQCICMNLQDHLNGLTETR
Function
Fructose-bisphosphatase hydrolyzing fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate. Acts as a negative regulator of glycolysis by lowering intracellular levels of fructose-2,6-bisphosphate in a p53/TP53-dependent manner, resulting in the pentose phosphate pathway (PPP) activation and NADPH production. Contributes to the generation of reduced glutathione to cause a decrease in intracellular reactive oxygen species (ROS) content, correlating with its ability to protect cells from oxidative or metabolic stress-induced cell death. Plays a role in promoting protection against cell death during hypoxia by decreasing mitochondria ROS levels in a HK2-dependent manner through a mechanism that is independent of its fructose-bisphosphatase activity. In response to cardiac damage stress, mediates p53-induced inhibition of myocyte mitophagy through ROS levels reduction and the subsequent inactivation of BNIP3. Reduced mitophagy results in an enhanced apoptotic myocyte cell death, and exacerbates cardiac damage. Plays a role in adult intestinal regeneration; contributes to the growth, proliferation and survival of intestinal crypts following tissue ablation. Plays a neuroprotective role against ischemic brain damage by enhancing PPP flux and preserving mitochondria functions. Protects glioma cells from hypoxia- and ROS-induced cell death by inhibiting glycolysis and activating mitochondrial energy metabolism and oxygen consumption in a TKTL1-dependent and p53/TP53-independent manner. Plays a role in cancer cell survival by promoting DNA repair through activating PPP flux in a CDK5-ATM-dependent signaling pathway during hypoxia and/or genome stress-induced DNA damage responses. Involved in intestinal tumor progression.
Tissue Specificity Expressed in the brain . Expressed in breast tumors . Expressed in glioblastomas .
KEGG Pathway
Fructose and mannose metabolism (hsa00051 )
Metabolic pathways (hsa01100 )
Central carbon metabolism in cancer (hsa05230 )
Reactome Pathway
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
BioCyc Pathway
MetaCyc:HS01277-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

50 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute monocytic leukemia DIS28NEL Strong Biomarker [1]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [1]
Adult glioblastoma DISVP4LU Strong Biomarker [2]
Adult lymphoma DISK8IZR Strong Altered Expression [3]
Adult T-cell leukemia/lymphoma DIS882XU Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Alzheimer disease DISF8S70 Strong Altered Expression [6]
Breast carcinoma DIS2UE88 Strong Biomarker [7]
Cerebral infarction DISR1WNP Strong Biomarker [8]
Cerebral palsy DIS82ODL Strong Genetic Variation [9]
Chronic pancreatitis DISBUOMJ Strong Genetic Variation [9]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [10]
Colonic neoplasm DISSZ04P Strong Altered Expression [11]
Dementia DISXL1WY Strong Altered Expression [6]
Epilepsy DISBB28L Strong Biomarker [12]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [13]
Fanconi anemia complementation group A DIS8PZLI Strong Biomarker [14]
Fanconi's anemia DISGW6Q8 Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Intervertebral disc degeneration DISG3AIM Strong Biomarker [16]
Isolated cleft palate DISV80CD Strong Genetic Variation [9]
leukaemia DISS7D1V Strong Biomarker [1]
Leukemia DISNAKFL Strong Biomarker [1]
Lung adenocarcinoma DISD51WR Strong Biomarker [17]
Lung cancer DISCM4YA Strong Altered Expression [18]
Lung carcinoma DISTR26C Strong Altered Expression [18]
Lymphoma DISN6V4S Strong Altered Expression [3]
Neoplasm DISZKGEW Strong Biomarker [19]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [18]
Obesity DIS47Y1K Strong Biomarker [20]
Pancreas disorder DISDH7NI Strong Biomarker [21]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [3]
Retinoblastoma DISVPNPB Strong Biomarker [22]
Small lymphocytic lymphoma DIS30POX Strong Altered Expression [23]
Stroke DISX6UHX Strong Biomarker [24]
T-cell lymphoma DISSXRTQ Strong Altered Expression [3]
Ulcerative colitis DIS8K27O Strong Biomarker [11]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W moderate Posttranslational Modification [25]
Hypoglycemia DISRCKR7 moderate Biomarker [26]
Liver cancer DISDE4BI moderate Posttranslational Modification [25]
Primary cutaneous T-cell lymphoma DIS35WVW Disputed Altered Expression [27]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [28]
Gastric cancer DISXGOUK Limited Altered Expression [29]
Glioblastoma multiforme DISK8246 Limited Biomarker [2]
Lewy body dementia DISAE66J Limited Biomarker [30]
Motor neurone disease DISUHWUI Limited Biomarker [30]
Nasopharyngeal carcinoma DISAOTQ0 Limited Altered Expression [31]
Pancreatitis DIS0IJEF Limited Biomarker [21]
Parkinson disease DISQVHKL Limited Biomarker [30]
Stomach cancer DISKIJSX Limited Altered Expression [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 50 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
26 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [32]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [33]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [34]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [35]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [36]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [38]
Quercetin DM3NC4M Approved Quercetin increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [39]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [40]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [41]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [42]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [43]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [44]
Progesterone DMUY35B Approved Progesterone decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [45]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [46]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [47]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [44]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [44]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [44]
Colchicine DM2POTE Approved Colchicine decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [48]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [44]
Adenine DMZLHKJ Approved Adenine decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [48]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [49]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [50]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [46]
DZNep DM0JXBK Investigative DZNep decreases the expression of Fructose-2,6-bisphosphatase TIGAR (TIGAR). [51]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Drug(s)

References

1 TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and associated with poor prognosis in patients with cytogenetically normal acute myeloid leukemia.J Hematol Oncol. 2016 Nov 25;9(1):128. doi: 10.1186/s13045-016-0360-4.
2 TIGAR promotes growth, survival and metastasis through oxidation resistance and AKT activation in glioblastoma.Oncol Lett. 2019 Sep;18(3):2509-2517. doi: 10.3892/ol.2019.10574. Epub 2019 Jul 5.
3 The TP53-Induced Glycolysis and Apoptosis Regulator mediates cooperation between HTLV-1 p30(II) and the retroviral oncoproteins Tax and HBZ and is highly expressed in an in vivo xenograft model of HTLV-1-induced lymphoma.Virology. 2018 Jul;520:39-58. doi: 10.1016/j.virol.2018.05.007. Epub 2018 May 26.
4 The human T-cell leukemia virus type-1 p30(II) protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.Virology. 2018 May;518:103-115. doi: 10.1016/j.virol.2018.02.010. Epub 2018 Feb 20.
5 TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells.Acta Pharmacol Sin. 2019 Jan;40(1):111-121. doi: 10.1038/s41401-018-0001-2. Epub 2018 May 16.
6 Cell cycle checkpoint abnormalities during dementia: A plausible association with the loss of protection against oxidative stress in Alzheimer's disease [corrected].PLoS One. 2013 Jul 5;8(7):e68361. doi: 10.1371/journal.pone.0068361. Print 2013.
7 Downregulation of TIGAR sensitizes the antitumor effect of physapubenolide through increasing intracellular ROS levels to trigger apoptosis and autophagosome formation in human breast carcinoma cells.Biochem Pharmacol. 2017 Nov 1;143:90-106. doi: 10.1016/j.bcp.2017.07.018. Epub 2017 Aug 1.
8 G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway.Free Radic Biol Med. 2017 Nov;112:433-444. doi: 10.1016/j.freeradbiomed.2017.08.011. Epub 2017 Aug 18.
9 Validation of Demographics, Etiology, and Risk Factors for Chronic Pancreatitis in the USA: A Report of the North American Pancreas Study (NAPS) Group.Dig Dis Sci. 2017 Aug;62(8):2133-2140. doi: 10.1007/s10620-017-4621-z. Epub 2017 Jun 9.
10 Hypoxia-induced hsa-miR-101 promotes glycolysis by targeting TIGAR mRNA in clear cell renal cell carcinoma.Mol Med Rep. 2017 Mar;15(3):1373-1378. doi: 10.3892/mmr.2017.6139. Epub 2017 Jan 24.
11 TIGAR is required for efficient intestinal regeneration and tumorigenesis.Dev Cell. 2013 Jun 10;25(5):463-77. doi: 10.1016/j.devcel.2013.05.001. Epub 2013 May 30.
12 TIGAR suppresses seizures induced by kainic acid through inhibiting oxidative stress and neuronal apoptosis.Biochem Biophys Res Commun. 2019 Jul 30;515(3):436-441. doi: 10.1016/j.bbrc.2019.05.156. Epub 2019 May 31.
13 Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma.J Cell Physiol. 2019 Jul;234(7):12019-12028. doi: 10.1002/jcp.27863. Epub 2018 Dec 6.
14 p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells.Stem Cells. 2019 Jul;37(7):937-947. doi: 10.1002/stem.3015. Epub 2019 May 3.
15 Potent effects of dioscin against hepatocellular carcinoma through regulating TP53-induced glycolysis and apoptosis regulator (TIGAR)-mediated apoptosis, autophagy, and DNA damage.Br J Pharmacol. 2019 Apr;176(7):919-937. doi: 10.1111/bph.14594. Epub 2019 Mar 18.
16 TIGAR impedes compression-induced intervertebral disc degeneration by suppressing nucleus pulposus cell apoptosis and autophagy.J Cell Physiol. 2020 Feb;235(2):1780-1794. doi: 10.1002/jcp.29097. Epub 2019 Jul 17.
17 High expression of synthesis of cytochrome c oxidase 2 and TP53-induced glycolysis and apoptosis regulator can predict poor prognosis in human lung adenocarcinoma.Hum Pathol. 2018 Jul;77:54-62. doi: 10.1016/j.humpath.2017.12.029. Epub 2018 Apr 7.
18 Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer.Mol Cancer. 2018 May 12;17(1):88. doi: 10.1186/s12943-018-0839-4.
19 Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide.Int J Mol Sci. 2019 Mar 1;20(5):1061. doi: 10.3390/ijms20051061.
20 Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice.Mol Cell Proteomics. 2018 Jul;17(7):1354-1364. doi: 10.1074/mcp.RA118.000620. Epub 2018 May 18.
21 Pancreatitis: TIGAR-O Version 2 Risk/Etiology Checklist With Topic Reviews, Updates, and Use Primers.Clin Transl Gastroenterol. 2019 Jun;10(6):e00027. doi: 10.14309/ctg.0000000000000027.
22 TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex.Br J Cancer. 2012 Jul 24;107(3):516-26. doi: 10.1038/bjc.2012.260. Epub 2012 Jul 10.
23 TP53-induced glycolysis and apoptosis regulator protects from spontaneous apoptosis and predicts poor prognosis in chronic lymphocytic leukemia.Leuk Res. 2016 Nov;50:72-77. doi: 10.1016/j.leukres.2016.09.013. Epub 2016 Sep 15.
24 TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury.Free Radic Biol Med. 2019 Jun;137:13-23. doi: 10.1016/j.freeradbiomed.2019.04.002. Epub 2019 Apr 9.
25 SP1 plays a pivotal role for basal activity of TIGAR promoter in liver cancer cell lines.Mol Cell Biochem. 2012 Jan;359(1-2):17-23. doi: 10.1007/s11010-011-0993-0. Epub 2011 Jul 15.
26 Melatonin ameliorates hypoglycemic stress-induced brain endothelial tight junction injury by inhibiting protein nitration of TP53-induced glycolysis and apoptosis regulator.J Pineal Res. 2017 Nov;63(4):e12440. doi: 10.1111/jpi.12440. Epub 2017 Sep 6.
27 Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma.Mol Cancer Ther. 2017 Oct;16(10):2304-2314. doi: 10.1158/1535-7163.MCT-17-0060. Epub 2017 Jul 20.
28 Higher plasma concentration of TP53-induced glycolysis and apoptosis regulator is associated with a lower risk of colorectal cancer metastasis.Cancer Manag Res. 2018 Dec 24;11:263-272. doi: 10.2147/CMAR.S190272. eCollection 2019.
29 TIGAR Promotes Tumorigenesis and Protects Tumor Cells From Oxidative and Metabolic Stresses in Gastric Cancer.Front Oncol. 2019 Nov 19;9:1258. doi: 10.3389/fonc.2019.01258. eCollection 2019.
30 TIGAR inclusion pathology is specific for Lewy body diseases.Brain Res. 2019 Mar 1;1706:218-223. doi: 10.1016/j.brainres.2018.09.032. Epub 2018 Sep 26.
31 Prognostic value of TIGAR and LC3B protein expression in nasopharyngeal carcinoma.Cancer Manag Res. 2018 Nov 12;10:5605-5616. doi: 10.2147/CMAR.S175501. eCollection 2018.
32 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
33 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
34 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
35 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
36 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
37 p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 2011 Apr 21;6(4):e19198. doi: 10.1371/journal.pone.0019198.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
40 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
41 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
42 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
43 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
44 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
45 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
46 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
47 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
48 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
49 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
50 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
51 S-adenosylhomocysteine (AdoHcy)-dependent methyltransferase inhibitor DZNep overcomes breast cancer tamoxifen resistance via induction of NSD2 degradation and suppression of NSD2-driven redox homeostasis. Chem Biol Interact. 2020 Feb 1;317:108965. doi: 10.1016/j.cbi.2020.108965. Epub 2020 Jan 28.