General Information of Drug Combination (ID: DCRFEZA)

Drug Combination Name
Docetaxel Sorafenib
Indication
Disease Entry Status REF
Glioma Investigative [1]
Component Drugs Docetaxel   DMDI269 Sorafenib   DMS8IFC
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: SF-295
Zero Interaction Potency (ZIP) Score: 6.86
Bliss Independence Score: 9.83
Loewe Additivity Score: 6.02
LHighest Single Agent (HSA) Score: 6.03

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Docetaxel
Disease Entry ICD 11 Status REF
Advanced cancer 2A00-2F9Z Approved [2]
Breast carcinoma N.A. Approved [2]
Head and neck cancer 2D42 Approved [2]
Leiomyosarcoma 2B58 Approved [2]
Lung cancer 2C25.0 Approved [2]
Non-small-cell lung cancer 2C25.Y Approved [2]
Prostate adenocarcinoma N.A. Approved [2]
Prostate cancer 2C82.0 Approved [2]
Solid tumour/cancer 2A00-2F9Z Approved [3]
Urinary system neoplasm N.A. Approved [2]
Gastric cancer 2B72 Investigative [2]
Docetaxel Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Tubulin (TUB) TTML2WA NOUNIPROTAC Inhibitor [9]
------------------------------------------------------------------------------------
Docetaxel Interacts with 8 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 1 (ABCC1) DTSYQGK MRP1_HUMAN Substrate [10]
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [11]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [12]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [13]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [14]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [15]
TAP-like protein (ABCB9) DT68UV2 ABCB9_HUMAN Substrate [16]
Multidrug resistance-associated protein 7 (ABCC10) DTPS120 MRP7_HUMAN Substrate [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DTP(s)
Docetaxel Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [18]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [19]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [19]
------------------------------------------------------------------------------------
Docetaxel Interacts with 83 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Response To Substance [20]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Increases ADR [21]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Increases Expression [22]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Response To Substance [20]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [23]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [24]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Decreases Expression [25]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Expression [25]
Progesterone receptor (PGR) OT0FZ3QE PRGR_HUMAN Decreases Expression [25]
Aromatase (CYP19A1) OTZ6XF74 CP19A_HUMAN Decreases Expression [25]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [25]
Dihydropyrimidine dehydrogenase (DPYD) OTWRF2NR DPYD_HUMAN Decreases Activity [6]
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [26]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [26]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Degradation [27]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [28]
PC4 and SFRS1-interacting protein (PSIP1) OT4YAFUS PSIP1_HUMAN Increases Cleavage [29]
RAF proto-oncogene serine/threonine-protein kinase (RAF1) OT51LSFO RAF1_HUMAN Increases Expression [30]
Granulocyte-macrophage colony-stimulating factor (CSF2) OT1M7D28 CSF2_HUMAN Increases Secretion [31]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [7]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Phosphorylation [32]
Protein kinase C beta type (PRKCB) OTYQ0656 KPCB_HUMAN Increases Phosphorylation [33]
Keratin, type I cytoskeletal 18 (KRT18) OTVLQFIP K1C18_HUMAN Increases Expression [34]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Increases Activity [35]
Prostate-specific antigen (KLK3) OTFGSBFJ KLK3_HUMAN Decreases Expression [36]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [32]
Androgen receptor (AR) OTUBKAZZ ANDR_HUMAN Decreases Expression [37]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Expression [38]
Natriuretic peptides B (NPPB) OTSN2IPY ANFB_HUMAN Increases Expression [39]
Cyclic AMP-dependent transcription factor ATF-3 (ATF3) OTC1UOHP ATF3_HUMAN Decreases Expression [40]
Growth arrest and DNA damage-inducible protein GADD45 alpha (GADD45A) OTDRV63V GA45A_HUMAN Decreases Expression [40]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Increases Activity [35]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [41]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [30]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [30]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [8]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Decreases Expression [40]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [42]
Caspase-2 (CASP2) OTUDYSPP CASP2_HUMAN Increases Activity [29]
Cyclin-dependent kinase inhibitor 2A (CDKN2A) OTN0ZWAE CDN2A_HUMAN Decreases Expression [43]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [23]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [44]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [45]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [7]
Focal adhesion kinase 1 (PTK2) OT3Q1JDY FAK1_HUMAN Increases Cleavage [46]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [47]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Increases Expression [27]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Activity [46]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Increases Activity [27]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Decreases Phosphorylation [27]
ELL-associated factor 2 (EAF2) OTSOET5L EAF2_HUMAN Decreases Expression [40]
Small integral membrane protein 14 (SMIM14) OT47IF19 SIM14_HUMAN Decreases Expression [40]
Protein FAM117A (FAM117A) OT2FBGGV F117A_HUMAN Decreases Expression [40]
Delta-like protein 4 (DLL4) OTRA4K2V DLL4_HUMAN Increases Expression [44]
Tumor necrosis factor receptor superfamily member 19 (TNFRSF19) OTTVT4MB TNR19_HUMAN Decreases Expression [40]
Tropomodulin-2 (TMOD2) OTTTUH2W TMOD2_HUMAN Decreases Expression [40]
Flavin-containing monooxygenase 3 (FMO3) OT1G2EV3 FMO3_HUMAN Affects Response To Substance [48]
Kinesin heavy chain isoform 5A (KIF5A) OT3ETTI6 KIF5A_HUMAN Decreases Response To Substance [49]
Proteinase-activated receptor 1 (F2R) OT4WVWBO PAR1_HUMAN Decreases Response To Substance [50]
ATP-binding cassette sub-family G member 1 (ABCG1) OT5BG6MK ABCG1_HUMAN Affects Response To Substance [48]
Regulator of G-protein signaling 17 (RGS17) OT5RVUDS RGS17_HUMAN Increases Response To Substance [51]
Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (BUB1B) OT8KME51 BUB1B_HUMAN Affects Response To Substance [52]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [53]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Response To Substance [54]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Decreases Response To Substance [55]
Cytochrome P450 1A2 (CYP1A2) OTLLBX48 CP1A2_HUMAN Affects Response To Substance [48]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Increases Response To Substance [20]
Receptor tyrosine-protein kinase erbB-2 (ERBB2) OTOAUNCK ERBB2_HUMAN Increases Response To Substance [56]
Kinesin-like protein KIFC3 (KIFC3) OTOPD4QO KIFC3_HUMAN Decreases Response To Substance [49]
Regulator of G-protein signaling 10 (RGS10) OTQ8N1QH RGS10_HUMAN Increases Response To Substance [51]
E3 ubiquitin-protein ligase CHFR (CHFR) OTRAD2TT CHFR_HUMAN Decreases Response To Substance [57]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Response To Substance [58]
Cell surface glycoprotein MUC18 (MCAM) OTT8XKGE MUC18_HUMAN Decreases Response To Substance [59]
Kinesin-like protein KIF12 (KIF12) OTTALNDD KIF12_HUMAN Decreases Response To Substance [49]
Nucleophosmin (NPM1) OTTBYYT0 NPM_HUMAN Decreases Response To Substance [60]
Flavin-containing monooxygenase 2 (FMO2) OTUJUL9S FMO2_HUMAN Affects Response To Substance [48]
NADPH--cytochrome P450 reductase (POR) OTVIDOCH NCPR_HUMAN Increases Response To Substance [20]
Kinesin-like protein KIF14 (KIF14) OTXHT4JM KIF14_HUMAN Decreases Response To Substance [61]
Mitotic spindle assembly checkpoint protein MAD2A (MAD2L1) OTXNGZCG MD2L1_HUMAN Affects Response To Substance [52]
Cellular retinoic acid-binding protein 2 (CRABP2) OTY01V9G RABP2_HUMAN Affects Response To Substance [62]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Affects Response To Substance [63]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Affects Response To Substance [48]
ATP-binding cassette sub-family C member 6 (ABCC6) OTZT0LKT MRP6_HUMAN Affects Response To Substance [48]
------------------------------------------------------------------------------------
⏷ Show the Full List of 83 DOT(s)
Indication(s) of Sorafenib
Disease Entry ICD 11 Status REF
Adenocarcinoma 2D40 Approved [4]
Carcinoma 2A00-2F9Z Approved [4]
Clear cell renal carcinoma N.A. Approved [4]
Lung cancer 2C25.0 Approved [4]
Medullary thyroid gland carcinoma N.A. Approved [4]
Non-small-cell lung cancer 2C25.Y Approved [4]
Renal cell carcinoma 2C90 Approved [5]
Thyroid cancer 2D10 Approved [4]
Hepatocellular carcinoma 2C12.02 Phase 3 [5]
Myelodysplastic syndrome 2A37 Phase 2 [5]
Sorafenib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Modulator [69]
Platelet-derived growth factor receptor beta (PDGFRB) TTI7421 PGFRB_HUMAN Modulator [69]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [70]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Modulator [69]
------------------------------------------------------------------------------------
Sorafenib Interacts with 7 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [71]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [72]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [73]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [74]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [75]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [74]
RalBP1-associated Eps domain-containing protein 2 (RALBP1) DTYEM9B REPS2_HUMAN Substrate [76]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DTP(s)
Sorafenib Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [77]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [78]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [19]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [19]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [77]
UDP-glucuronosyltransferase 1A9 (UGT1A9) DE85D2P UD19_HUMAN Metabolism [79]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Sorafenib Interacts with 112 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [80]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Affects Response To Substance [81]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Phosphorylation [82]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [83]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [84]
DNA damage-inducible transcript 4 protein (DDIT4) OTHY8SY4 DDIT4_HUMAN Increases Expression [84]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [85]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [86]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [86]
Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) OTFBU4GD P3C2A_HUMAN Decreases Expression [64]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [64]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [64]
GTPase NRas (NRAS) OTVQ1DG3 RASN_HUMAN Decreases Expression [64]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Decreases Expression [64]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [64]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Decreases Expression [64]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [64]
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) OTTOMI8J PK3CA_HUMAN Decreases Expression [64]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [64]
Cyclin-dependent kinase 9 (CDK9) OT2B7OGB CDK9_HUMAN Decreases Expression [64]
Growth factor receptor-bound protein 2 (GRB2) OTOP7LTE GRB2_HUMAN Decreases Expression [64]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [64]
Interferon regulatory factor 5 (IRF5) OT8SIIAP IRF5_HUMAN Increases Expression [64]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [64]
Serine/threonine-protein kinase PLK3 (PLK3) OT19CT2Z PLK3_HUMAN Increases Expression [64]
Serine/threonine-protein kinase PLK2 (PLK2) OTKMJXJ8 PLK2_HUMAN Increases Expression [64]
Histone deacetylase 6 (HDAC6) OT9W9MXQ HDAC6_HUMAN Decreases Expression [64]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [84]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Decreases Expression [87]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Decreases Expression [88]
Zinc finger protein SNAI2 (SNAI2) OT7Y8EJ2 SNAI2_HUMAN Decreases Expression [65]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Ubiquitination [89]
Growth arrest and DNA damage-inducible protein GADD45 beta (GADD45B) OTL9I7LO GA45B_HUMAN Increases Expression [90]
Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) OTYG179K PR15A_HUMAN Increases Expression [66]
Growth arrest and DNA damage-inducible protein GADD45 gamma (GADD45G) OT8V1J4M GA45G_HUMAN Increases Expression [91]
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Affects Localization [88]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Activity [92]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Decreases Expression [93]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Activity [94]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [95]
RAF proto-oncogene serine/threonine-protein kinase (RAF1) OT51LSFO RAF1_HUMAN Decreases Activity [82]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Expression [96]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [90]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [97]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Expression [98]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Phosphorylation [88]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Activity [99]
High mobility group protein B1 (HMGB1) OT4B7CPF HMGB1_HUMAN Increases Expression [95]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [100]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [92]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [80]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [101]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Increases Expression [65]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Decreases Activity [102]
Serine/threonine-protein kinase B-raf (BRAF) OT7S81XQ BRAF_HUMAN Decreases Activity [103]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Phosphorylation [104]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [84]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [105]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [106]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [107]
G1/S-specific cyclin-D2 (CCND2) OTDULQF9 CCND2_HUMAN Decreases Expression [107]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [101]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [108]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Decreases Phosphorylation [82]
Dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) OTUE7Z91 MP2K2_HUMAN Decreases Phosphorylation [103]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [109]
Signal transducer and activator of transcription 5A (STAT5A) OTBSJGN3 STA5A_HUMAN Decreases Activity [110]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [111]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Decreases Phosphorylation [93]
Mitogen-activated protein kinase 9 (MAPK9) OTCEVJ9E MK09_HUMAN Decreases Phosphorylation [93]
Dual specificity mitogen-activated protein kinase kinase 4 (MAP2K4) OTZPZX11 MP2K4_HUMAN Decreases Phosphorylation [93]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [92]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [112]
CCAAT/enhancer-binding protein delta (CEBPD) OTNBIPMY CEBPD_HUMAN Increases Expression [91]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [111]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Response To Substance [113]
Stanniocalcin-1 (STC1) OTGVVXYF STC1_HUMAN Decreases Expression [114]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [115]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [97]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Expression [95]
Sestrin-2 (SESN2) OT889IXY SESN2_HUMAN Increases Expression [116]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [117]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [118]
Cyclin-dependent kinase 6 (CDK6) OTR95N0X CDK6_HUMAN Decreases Expression [101]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Phosphorylation [103]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Cleavage [88]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [88]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [119]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [120]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [105]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [121]
Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) OTXEE550 APR_HUMAN Decreases Expression [122]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [67]
Mitogen-activated protein kinase 14 (MAPK14) OT5TCO3O MK14_HUMAN Decreases Expression [123]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Decreases Expression [88]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [124]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [67]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [92]
Serine/threonine-protein kinase PINK1, mitochondrial (PINK1) OT50NR57 PINK1_HUMAN Increases Expression [89]
Eukaryotic translation initiation factor 2A (EIF2A) OTWXELQP EIF2A_HUMAN Increases Phosphorylation [66]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [125]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [126]
Ubiquitin carboxyl-terminal hydrolase CYLD (CYLD) OT37FKH0 CYLD_HUMAN Increases Expression [83]
Diablo IAP-binding mitochondrial protein (DIABLO) OTHJ9MCZ DBLOH_HUMAN Affects Localization [122]
Eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) OT0DZGY4 E2AK3_HUMAN Increases Phosphorylation [66]
E3 ubiquitin-protein ligase TRIM62 (TRIM62) OT15YO6N TRI62_HUMAN Affects Response To Substance [127]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Response To Substance [88]
ATP-binding cassette sub-family C member 3 (ABCC3) OTC3IJV4 MRP3_HUMAN Affects Response To Substance [81]
Hepatocyte growth factor (HGF) OTGHUA23 HGF_HUMAN Decreases Response To Substance [128]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Affects Response To Substance [81]
Receptor-type tyrosine-protein kinase FLT3 (FLT3) OTMSRYMK FLT3_HUMAN Increases Response To Substance [117]
Na(+)/citrate cotransporter (SLC13A5) OTPH1TA7 S13A5_HUMAN Decreases Response To Substance [129]
------------------------------------------------------------------------------------
⏷ Show the Full List of 112 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Adenocarcinoma DCA27SC DU-145 Investigative [1]
Adenocarcinoma DCPVH4D A549 Investigative [1]
Adenocarcinoma DCMCT2I NCIH23 Investigative [1]
Adenocarcinoma DC4N0PP HCT116 Investigative [1]
Adenocarcinoma DC6ZBOE HT29 Investigative [1]
Adenocarcinoma DCJU6GE HCC-2998 Investigative [1]
Amelanotic melanoma DCWWR06 M14 Investigative [1]
Amelanotic melanoma DCLPU1U MDA-MB-435 Investigative [1]
Anaplastic large cell lymphoma DC3R9M9 SR Investigative [1]
Astrocytoma DCHNR29 U251 Investigative [1]
Astrocytoma DCWWCJ9 SNB-19 Investigative [1]
Childhood T acute lymphoblastic leukemia DCBDNZD CCRF-CEM Investigative [1]
Clear cell renal cell carcinoma DCIZRNG A498 Investigative [1]
Clear cell renal cell carcinoma DC5NA6P 786-0 Investigative [1]
Cutaneous melanoma DCAUVVZ SK-MEL-28 Investigative [1]
Cutaneous melanoma DC68A2R SK-MEL-5 Investigative [1]
Glioblastoma DCTQ5I4 SNB-75 Investigative [1]
Glioma DC9CC7Z SF-539 Investigative [1]
Glioma DCQ323L SF-268 Investigative [1]
High grade ovarian serous adenocarcinoma DCCCCSE OVCAR-5 Investigative [1]
High grade ovarian serous adenocarcinoma DCV7DEI OVCAR-4 Investigative [1]
High grade ovarian serous adenocarcinoma DCNCG98 OVCAR-8 Investigative [1]
Lung adenocarcinoma DC98PFW MDA-MB-231 Investigative [1]
Malignant melanoma DCKG7TD UACC62 Investigative [1]
Melanoma DCZA5TY SK-MEL-2 Investigative [1]
Melanoma DC8S413 UACC-257 Investigative [1]
Minimally invasive lung adenocarcinoma DCSYSYQ NCI-H322M Investigative [1]
Mixed endometrioid and clear cell carcinoma DCZJYXL IGROV1 Investigative [1]
Papillary renal cell carcinoma DCF6PA8 ACHN Investigative [1]
Plasma cell myeloma DC717XR RPMI-8226 Investigative [1]
Pleural epithelioid mesothelioma DCZEY3J NCI-H226 Investigative [1]
Prostate carcinoma DCEQBV2 PC-3 Investigative [1]
Renal cell carcinoma DCM7R4M SN12C Investigative [1]
Breast adenocarcinoma DCKVT07 MDA-MB-468 Investigative [130]
Carcinoma DCB9QEH RXF 393 Investigative [130]
Colon adenocarcinoma DCIN5IS COLO 205 Investigative [130]
Colon carcinoma DCCFQ6X KM12 Investigative [130]
Invasive ductal carcinoma DCNOJJD HS 578T Investigative [130]
Invasive ductal carcinoma DCTVFRF BT-549 Investigative [130]
Invasive ductal carcinoma DC6U2KU T-47D Investigative [130]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 DrugCom(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Docetaxel FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6809).
4 Sorafenib FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5711).
6 Synergistic effects of docetaxel and S-1 by modulating the expression of metabolic enzymes of 5-fluorouracil in human gastric cancer cell lines. Int J Cancer. 2006 Aug 15;119(4):783-91.
7 Induction of tubulin by docetaxel is associated with p53 status in human non small cell lung cancer cell lines. Int J Cancer. 2006 Jan 15;118(2):317-25. doi: 10.1002/ijc.21372.
8 Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer. 2005 Jun 20;115(3):484-92. doi: 10.1002/ijc.20878.
9 Docetaxel: a review of its use in metastatic breast cancer. Drugs. 2005;65(17):2513-31.
10 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
11 Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone. Drug Metab Dispos. 2009 Jan;37(1):129-36.
12 Effect of ABCB1 C3435T polymorphism on docetaxel pharmacokinetics according to menopausal status in breast cancer patients. Br J Cancer. 2010 Aug 10;103(4):560-6.
13 Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2011 May;337(2):423-32.
14 FDA Drug Development and Drug Interactions
15 Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett. 2008 Feb 18;260(1-2):163-9.
16 RNA-sequencing dissects the transcriptome of polyploid cancer cells that are resistant to combined treatments of cisplatin with paclitaxel and docetaxel. Mol Biosyst. 2017 Sep 26;13(10):2125-2134.
17 Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Res. 2012 Dec 15;72(24):6457-67.
18 Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J Clin Oncol. 2005 Feb 20;23(6):1061-9.
19 Drug Interactions Flockhart Table
20 Concise prediction models of anticancer efficacy of 8 drugs using expression data from 12 selected genes. Int J Cancer. 2004 Sep 10;111(4):617-26. doi: 10.1002/ijc.20289.
21 Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 2008 May;99(5):967-72.
22 Enhanced in vitro invasiveness and drug resistance with altered gene expression patterns in a human lung carcinoma cell line after pulse selection with anticancer drugs. Int J Cancer. 2004 Sep 10;111(4):484-93. doi: 10.1002/ijc.20230.
23 Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. J Biochem Mol Toxicol. 2023 Jun;37(6):e23348. doi: 10.1002/jbt.23348. Epub 2023 Mar 31.
24 Comparison of burst of reactive oxygen species and activation of caspase-3 in apoptosis of K562 and HL-60 cells induced by docetaxel. Cancer Lett. 2004 Oct 8;214(1):103-13. doi: 10.1016/j.canlet.2004.03.047.
25 Down-regulation of intratumoral aromatase messenger RNA levels by docetaxel in human breast cancers. Clin Cancer Res. 2004 Dec 15;10(24):8163-9.
26 Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res. 2001 Jan 15;61(2):759-63.
27 Docetaxel-induced apoptosis of human melanoma is mediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway. Clin Cancer Res. 2007 Feb 15;13(4):1308-14. doi: 10.1158/1078-0432.CCR-06-2216.
28 PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol. 2010 Sep;66(4):765-71. doi: 10.1007/s00280-009-1221-4. Epub 2009 Dec 30.
29 Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer. 2009 Aug 28;8:68. doi: 10.1186/1476-4598-8-68.
30 Docetaxel induces p53-dependent apoptosis and synergizes with farnesyl transferase inhibitor r115777 in human epithelial cancer cells. Front Biosci. 2005 Sep 1;10:2566-75. doi: 10.2741/1720.
31 Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol Cell Endocrinol. 2008 Jun 11;287(1-2):57-64. doi: 10.1016/j.mce.2008.01.015. Epub 2008 Feb 3.
32 All-trans retinoic acid potentiates Taxotere-induced cell death mediated by Jun N-terminal kinase in breast cancer cells. Oncogene. 2004 Jan 15;23(2):426-33. doi: 10.1038/sj.onc.1207040.
33 Docetaxel Facilitates Endothelial Dysfunction through Oxidative Stress via Modulation of Protein Kinase C Beta: The Protective Effects of Sotrastaurin. Toxicol Sci. 2015 May;145(1):59-67. doi: 10.1093/toxsci/kfv017. Epub 2015 Jan 28.
34 Docetaxel induces apoptosis in hormone refractory prostate carcinomas during multiple treatment cycles. Br J Cancer. 2006 Jun 5;94(11):1592-8. doi: 10.1038/sj.bjc.6603129.
35 The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther. 2004 Jan;3(1):59-70.
36 Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010 Oct 15;70(20):7992-8002. doi: 10.1158/0008-5472.CAN-10-0585. Epub 2010 Aug 31.
37 Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem Pharmacol. 2011 Nov 1;82(9):1100-9. doi: 10.1016/j.bcp.2011.07.078. Epub 2011 Jul 23.
38 Replication-dependent -H2AX formation is involved in docetaxel-induced apoptosis in NSCLC A549 cells. Oncol Rep. 2010 Nov;24(5):1297-305. doi: 10.3892/or_00000986.
39 Docetaxel induced cardiotoxicity. Heart. 2001 Aug;86(2):219. doi: 10.1136/heart.86.2.219.
40 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
41 [The mechanism of docetaxel-induced apoptosis in human lung cancer cells]. Zhonghua Zhong Liu Za Zhi. 2000 May;22(3):208-11.
42 Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. J Nutr Biochem. 2015 Apr;26(4):408-15. doi: 10.1016/j.jnutbio.2014.11.017. Epub 2015 Jan 15.
43 Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line. Toxicol Appl Pharmacol. 2006 Oct 1;216(1):89-97. doi: 10.1016/j.taap.2006.04.015. Epub 2006 May 19.
44 Role of delta-like ligand-4 in chemoresistance against docetaxel in MCF-7 cells. Hum Exp Toxicol. 2017 Apr;36(4):328-338. doi: 10.1177/0960327116650006. Epub 2016 Jun 22.
45 Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem Biol Interact. 2021 May 1;340:109448. doi: 10.1016/j.cbi.2021.109448. Epub 2021 Mar 26.
46 Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin Cancer Res. 2005 Dec 15;11(24 Pt 1):8829-36. doi: 10.1158/1078-0432.CCR-05-1728.
47 Enhanced Bax in oral SCC in relation to antitumor effects of chemotherapy. J Oral Pathol Med. 2005 Feb;34(2):93-9. doi: 10.1111/j.1600-0714.2004.00257.x.
48 Pharmacogenomics variation in drug metabolizing enzymes and transporters in relation to docetaxel toxicity in Lebanese breast cancer patients: paving the way for OMICs in low and middle income countries. OMICS. 2013 Jul;17(7):353-67. doi: 10.1089/omi.2013.0019. Epub 2013 Jun 11.
49 Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer. Breast Cancer Res Treat. 2012 Feb;131(3):849-58. doi: 10.1007/s10549-011-1500-8. Epub 2011 Apr 9.
50 PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem. 2005 Oct 15;96(3):641-52. doi: 10.1002/jcb.20533.
51 Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells. Mol Cancer. 2010 Nov 2;9:289. doi: 10.1186/1476-4598-9-289.
52 Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol). 2008 Oct;20(8):639-46. doi: 10.1016/j.clon.2008.06.010. Epub 2008 Aug 8.
53 EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch Toxicol. 2015 Apr;89(4):591-605. doi: 10.1007/s00204-014-1275-x. Epub 2014 Jun 3.
54 [Antisense RNA targeting survivin enhances the chemosensitivity of LOVO/Adr cells to taxotere]. Zhonghua Wei Chang Wai Ke Za Zhi. 2005 Sep;8(5):455-8.
55 Manganese superoxide dismutase is a promising target for enhancing chemosensitivity of basal-like breast carcinoma. Antioxid Redox Signal. 2014 May 20;20(15):2326-46. doi: 10.1089/ars.2013.5295. Epub 2013 Nov 14.
56 HER-2/neu as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Breast Cancer Res Treat. 2004 Aug;86(3):197-206. doi: 10.1023/B:BREA.0000036783.88387.47.
57 Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int J Oncol. 2007 Oct;31(4):713-20.
58 Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anticancer Res. 2005 May-Jun;25(3c):2367-79.
59 CD146 expression in human breast cancer cell lines induces phenotypic and functional changes observed in Epithelial to Mesenchymal Transition. PLoS One. 2012;7(8):e43752. doi: 10.1371/journal.pone.0043752. Epub 2012 Aug 30.
60 Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. Int J Oncol. 2014 Jul;45(1):448-58.
61 KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia. 2014 Mar;16(3):247-56, 256.e2. doi: 10.1016/j.neo.2014.03.008.
62 The prognostic gene CRABP2 affects drug sensitivity by regulating docetaxel-induced apoptosis in breast invasive carcinoma: A pan-cancer analysis. Chem Biol Interact. 2023 Mar 1;373:110372. doi: 10.1016/j.cbi.2023.110372. Epub 2023 Feb 2.
63 Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther. 2008 Jan;7(1):19-26. doi: 10.1158/1535-7163.MCT-07-0557. Epub 2008 Jan 9.
64 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
65 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
66 The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007 Aug;27(15):5499-513. doi: 10.1128/MCB.01080-06. Epub 2007 Jun 4.
67 Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008 Apr;22(4):808-18. doi: 10.1038/sj.leu.2405098. Epub 2008 Jan 17.
68 Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Toxicol In Vitro. 2018 Sep;51:74-82. doi: 10.1016/j.tiv.2018.04.010. Epub 2018 Apr 24.
69 Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.Mol Cancer Ther.2008 Oct;7(10):3129-40.
70 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
71 Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433-5.
72 Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26.
73 Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm. 2011 Apr 4;8(2):571-82.
74 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
75 Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma
76 Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010 Mar 15;126(6):1327-38.
77 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
78 Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5788-95.
79 Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4.
80 Differential inhibition of human CYP2C8 and molecular docking interactions elicited by sorafenib and its major N-oxide metabolite. Chem Biol Interact. 2021 Apr 1;338:109401. doi: 10.1016/j.cbi.2021.109401. Epub 2021 Feb 5.
81 The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 2013 Nov 11;8(11):e78675. doi: 10.1371/journal.pone.0078675. eCollection 2013.
82 Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther. 2009 Jan;8(1):152-9. doi: 10.1158/1535-7163.MCT-08-0553.
83 Down-regulation of CYLD as a trigger for NF-B activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells. Int J Oncol. 2011 Jan;38(1):121-31.
84 Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol. 2011 Aug 1;82(3):216-26. doi: 10.1016/j.bcp.2011.04.011. Epub 2011 May 13.
85 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
86 Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012 Sep 10;12:402.
87 The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res. 2007 Oct 1;67(19):9490-500. doi: 10.1158/0008-5472.CAN-07-0598.
88 Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005 Oct 21;280(42):35217-27. doi: 10.1074/jbc.M506551200. Epub 2005 Aug 18.
89 Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem. 2017 Sep 8;292(36):15105-15120. doi: 10.1074/jbc.M117.783175. Epub 2017 Jul 3.
90 Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2010 Nov 15;70(22):9309-18. doi: 10.1158/0008-5472.CAN-10-1033. Epub 2010 Nov 9.
91 Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget. 2015 Sep 29;6(29):27953-65. doi: 10.18632/oncotarget.4446.
92 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
93 Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ Toxicol. 2018 Dec;33(12):1237-1244. doi: 10.1002/tox.22630. Epub 2018 Sep 6.
94 Sorafenib inhibits transforming growth factor 1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011 May;53(5):1708-18. doi: 10.1002/hep.24254.
95 Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol In Vitro. 2021 Mar;71:105063. doi: 10.1016/j.tiv.2020.105063. Epub 2020 Dec 1.
96 Sorafenib is an antagonist of the aryl hydrocarbon receptor. Toxicology. 2022 Mar 30;470:153118. doi: 10.1016/j.tox.2022.153118. Epub 2022 Feb 3.
97 Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia. 2011 May;25(5):838-47. doi: 10.1038/leu.2011.2. Epub 2011 Feb 4.
98 Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007 Oct 1;67(19):9443-54. doi: 10.1158/0008-5472.CAN-07-1473.
99 Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem. 2007 Oct 5;282(40):29230-40. doi: 10.1074/jbc.M703461200. Epub 2007 Jul 30.
100 Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010 Nov;124(1):79-88. doi: 10.1007/s10549-009-0714-5. Epub 2010 Jan 7.
101 Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80. doi: 10.1124/jpet.106.108621. Epub 2006 Sep 7.
102 Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs. 2011 Jan;22(1):79-88. doi: 10.1097/CAD.0b013e32833f44fd.
103 Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology. 2007;85(1):45-53. doi: 10.1159/000100508. Epub 2007 Mar 5.
104 Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther. 2011 Jun;10(6):1028-35. doi: 10.1158/1535-7163.MCT-10-1044. Epub 2011 Apr 11.
105 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
106 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
107 Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther. 2008 Nov;7(11):3519-26. doi: 10.1158/1535-7163.MCT-08-0138.
108 Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling pathways. Chem Biol Interact. 2023 Jan 25;370:110329. doi: 10.1016/j.cbi.2022.110329. Epub 2022 Dec 22.
109 Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem. 2011 Jul;46(7):2845-51. doi: 10.1016/j.ejmech.2011.04.007. Epub 2011 Apr 14.
110 The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol. 2007 Sep;72(3):788-95. doi: 10.1124/mol.106.033308. Epub 2007 Jun 26.
111 Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol. 2015 Apr;36(4):2323-34. doi: 10.1007/s13277-014-2839-3. Epub 2014 Nov 22.
112 Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer. 2009 Oct 31;9:387. doi: 10.1186/1471-2407-9-387.
113 The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms. Eur J Cancer. 2010 Mar;46(4):836-50. doi: 10.1016/j.ejca.2009.12.025. Epub 2010 Jan 12.
114 Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015 Feb;143(2):374-84. doi: 10.1093/toxsci/kfu235. Epub 2014 Nov 3.
115 Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 2009 Oct;8(20):1904-13. doi: 10.4161/cbt.8.20.9436. Epub 2009 Oct 6.
116 Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 2019 Sep 15;379:114665. doi: 10.1016/j.taap.2019.114665. Epub 2019 Jul 16.
117 Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett. 2013 Feb 1;329(1):45-58. doi: 10.1016/j.canlet.2012.09.020. Epub 2012 Oct 2.
118 The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005 Oct 20;24(46):6861-9. doi: 10.1038/sj.onc.1208841.
119 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.
120 The multikinase inhibitor sorafenib induces caspase-dependent apoptosis in PC-3 prostate cancer cells. Asian J Androl. 2010 Jul;12(4):527-34. doi: 10.1038/aja.2010.21. Epub 2010 May 17.
121 Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005 Oct 28;3:39. doi: 10.1186/1479-5876-3-39.
122 GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.
123 Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006 Sep;5(9):2378-87. doi: 10.1158/1535-7163.MCT-06-0235.
124 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
125 Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008 Oct;7(10):1648-62. doi: 10.4161/cbt.7.10.6623. Epub 2008 Oct 12.
126 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
127 TRIM62 silencing represses the proliferation and invasion and increases the chemosensitivity of hepatocellular carcinoma cells by affecting the NF-B pathway. Toxicol Appl Pharmacol. 2022 Jun 15;445:116035. doi: 10.1016/j.taap.2022.116035. Epub 2022 Apr 23.
128 Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol. 2020 Aug;142:111475. doi: 10.1016/j.fct.2020.111475. Epub 2020 Jun 6.
129 Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol. 2020 Sep 1;402:115117. doi: 10.1016/j.taap.2020.115117. Epub 2020 Jul 4.
130 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.