General Information of Drug Off-Target (DOT) (ID: OTLJCZ1U)

DOT Name 14-3-3 protein sigma (SFN)
Synonyms Epithelial cell marker protein 1; Stratifin
Gene Name SFN
Related Disease
Ovarian cancer ( )
Squamous cell carcinoma ( )
Benign prostatic hyperplasia ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Carcinoma ( )
Carcinoma of esophagus ( )
Cervical cancer ( )
Cervical carcinoma ( )
Cholangiocarcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal neoplasm ( )
Ductal breast carcinoma in situ ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Gastric cancer ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Keloid ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Non-insulin dependent diabetes ( )
Non-small-cell lung cancer ( )
Ovarian neoplasm ( )
Pancreatic tumour ( )
Plasma cell myeloma ( )
Prostate neoplasm ( )
Stomach cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Adenocarcinoma ( )
Corpus callosum, agenesis of ( )
Esophageal cancer ( )
Melanoma ( )
Neoplasm of esophagus ( )
Prostate cancer ( )
Prostate carcinoma ( )
UniProt ID
1433S_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1YWT ; 1YZ5 ; 3IQJ ; 3IQU ; 3IQV ; 3LW1 ; 3MHR ; 3O8I ; 3P1N ; 3P1O ; 3P1P ; 3P1Q ; 3P1R ; 3P1S ; 3SMK ; 3SML ; 3SMM ; 3SMN ; 3SMO ; 3SP5 ; 3SPR ; 3T0L ; 3T0M ; 3U9X ; 3UX0 ; 4DAT ; 4DAU ; 4DHM ; 4DHN ; 4DHO ; 4DHP ; 4DHQ ; 4DHR ; 4DHS ; 4DHT ; 4DHU ; 4FL5 ; 4FR3 ; 4IEA ; 4JC3 ; 4JDD ; 4QLI ; 4Y32 ; 4Y3B ; 4Y5I ; 5BTV ; 5HF3 ; 5LTW ; 5LU1 ; 5LU2 ; 5MHC ; 5MOC ; 5MXO ; 5MY9 ; 5MYC ; 5N5R ; 5N5T ; 5N5W ; 5N75 ; 5OEG ; 5OEH ; 5OK9 ; 5OKF ; 5OM0 ; 5OMA ; 6FAU ; 6FAV ; 6FAW ; 6FBB ; 6FBW ; 6FBY ; 6FCP ; 6FI4 ; 6FI5 ; 6G6X ; 6G8I ; 6G8J ; 6G8K ; 6G8L ; 6G8P ; 6G8Q ; 6GHP ; 6HHP ; 6HKB ; 6HKF ; 6HMT ; 6HMU ; 6HN2 ; 6NV2 ; 6QDR ; 6QDS ; 6QDT ; 6QDU ; 6QHL ; 6QHM ; 6QIU ; 6QZR ; 6QZS ; 6R5L ; 6RHC ; 6RJL ; 6RJQ ; 6RJZ ; 6RK8 ; 6RKI ; 6RKK ; 6RKM ; 6RL3 ; 6RL4 ; 6RL6 ; 6RM5 ; 6RM7 ; 6RP6 ; 6RWH ; 6RWI ; 6RWS ; 6RWU ; 6RX2 ; 6S39 ; 6S3C ; 6S40 ; 6S9Q ; 6SIN ; 6SIO ; 6SIP ; 6SIQ ; 6SLV ; 6SLW ; 6SLX ; 6T5F ; 6T5H ; 6T80 ; 6TCH ; 6TJM ; 6TL3 ; 6TLF ; 6TLG ; 6TM7 ; 6TWZ ; 6W0L ; 6XWD ; 6XXC ; 6XY5 ; 6Y18 ; 6Y1D ; 6Y1J ; 6Y3M ; 6Y3O ; 6Y3R ; 6Y3S ; 6Y3V ; 6Y3W ; 6Y40 ; 6Y44 ; 6Y58 ; 6Y7T ; 6Y8A ; 6Y8B ; 6Y8D ; 6Y8E ; 6YE9 ; 6YIA ; 6YIB ; 6YIC ; 6YLU ; 6YOW ; 6YOX ; 6YOY ; 6YP2 ; 6YP3 ; 6YP8 ; 6YPL ; 6YPY ; 6YQ2 ; 6YR5 ; 6YR6 ; 6YR7 ; 6ZCJ ; 6ZVB ; 6ZVC ; 6ZVD ; 6ZVE ; 7AEW ; 7AOG ; 7AXN ; 7AYF ; 7AZ1 ; 7AZ2 ; 7B13 ; 7B15 ; 7B9M ; 7B9R ; 7B9T ; 7BA3 ; 7BA5 ; 7BA6 ; 7BA7 ; 7BA8 ; 7BA9 ; 7BAA ; 7BAB ; 7BDP ; 7BDT ; 7BDY ; 7BFW ; 7BG3 ; 7BGQ ; 7BGR ; 7BGV ; 7BGW ; 7BI3 ; 7BIQ ; 7BIW ; 7BIY ; 7BJB ; 7BJF ; 7BJL ; 7BJW ; 7BKH ; 7BM9 ; 7BMC ; 7NFW ; 7NIF ; 7NIG ; 7NIX ; 7NIZ ; 7NJ6 ; 7NJ8 ; 7NJ9 ; 7NJA ; 7NJB ; 7NK3 ; 7NK5 ; 7NLA ; 7NLE ; 7NM1 ; 7NM3 ; 7NM9 ; 7NMA ; 7NMH ; 7NMW ; 7NMX ; 7NN2 ; 7NND ; 7NNE ; 7NP2 ; 7NPB ; 7NPG ; 7NQP ; 7NR7 ; 7NRK ; 7NRL ; 7NSV ; 7NV4 ; 7NVI ; 7NWS ; 7NXS ; 7NXT ; 7NXW ; 7NXY ; 7NY4 ; 7NYE ; 7NYF ; 7NYG ; 7NZ6 ; 7NZG ; 7NZK ; 7NZV ; 7O07 ; 7O34 ; 7O3A ; 7O3F ; 7O3P ; 7O3Q ; 7O3R ; 7O3S ; 7O57 ; 7O59 ; 7O5A ; 7O5C ; 7O5D ; 7O5F ; 7O5G ; 7O5O ; 7O5P ; 7O5S ; 7O5U ; 7O5X ; 7O6F ; 7O6G ; 7O6I ; 7O6J ; 7O6K ; 7O6M ; 7O6O ; 7OB5 ; 7OB8 ; 7OBC ; 7OBD ; 7OBG ; 7OBH ; 7OBK ; 7OBL ; 7OBS ; 7OBT ; 7OBX ; 7OBY ; 7OPW ; 7OQ7 ; 7OQ8 ; 7OQ9 ; 7OQA ; 7OQG ; 7OQJ ; 7OQS ; 7OQU ; 7OQW ; 7OR3 ; 7OR5 ; 7OR7 ; 7OR8 ; 7ORG ; 7ORH ; 7ORS ; 7ORT ; 7PWT ; 7PWZ ; 7QIK ; 7QIP ; 7ZMU ; 7ZMW ; 8A62 ; 8A65 ; 8A68 ; 8A6F ; 8A6H ; 8ADM ; 8AFN ; 8AI0 ; 8ALR ; 8ALT ; 8ALV ; 8ALW ; 8AM7 ; 8ANB ; 8ANC ; 8ANF ; 8AOY ; 8APS ; 8AQ1 ; 8AQC ; 8AQE ; 8AQZ ; 8AR4 ; 8AR5 ; 8ARG ; 8ARO ; 8ARQ ; 8ARR ; 8ARW ; 8ARX ; 8ARY ; 8ARZ ; 8AS1 ; 8AT9 ; 8ATP ; 8ATR ; 8ATS ; 8AU2 ; 8AUS ; 8AUY ; 8AV0 ; 8AV3 ; 8AV4 ; 8AV7 ; 8AV8 ; 8AWG ; 8AXE ; 8AXU ; 8AZE ; 8B2I ; 8B2K ; 8B39 ; 8B4Q ; 8B5P ; 8BFC ; 8BI7 ; 8BJG ; 8BJN ; 8BM5 ; 8BWJ ; 8BWX ; 8BWZ ; 8BX0 ; 8BX3 ; 8BX4 ; 8BXI ; 8BXM ; 8BXN ; 8BXO ; 8BXQ ; 8BXS ; 8BY9 ; 8BYB ; 8BYC ; 8BYD ; 8BYE ; 8BYF ; 8BYG ; 8BYO ; 8BYY ; 8BYZ ; 8BZ0 ; 8BZ9 ; 8BZA ; 8BZB ; 8BZW ; 8C04 ; 8C0K ; 8C2D ; 8C2E ; 8C2F ; 8C2G ; 8C3C ; 8C4F ; 8C4G ; 8Q4L
Pfam ID
PF00244
Sequence
MERASLIQKAKLAEQAERYEDMAAFMKGAVEKGEELSCEERNLLSVAYKNVVGGQRAAWR
VLSSIEQKSNEEGSEEKGPEVREYREKVETELQGVCDTVLGLLDSHLIKEAGDAESRVFY
LKMKGDYYRYLAEVATGDDKKRIIDSARSAYQEAMDISKKEMPPTNPIRLGLALNFSVFH
YEIANSPEEAISLAKTTFDEAMADLHTLSEDSYKDSTLIMQLLRDNLTLWTADNAGEEGG
EAPQEPQS
Function
Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Promotes cytosolic retention of GBP1 GTPase by binding to phosphorylated GBP1, thereby inhibiting the innate immune response. Also acts as a TP53/p53-regulated inhibitor of G2/M progression. When bound to KRT17, regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway. May also regulate MDM2 autoubiquitination and degradation and thereby activate p53/TP53.
Tissue Specificity Present mainly in tissues enriched in stratified squamous keratinizing epithelium.
KEGG Pathway
Cell cycle (hsa04110 )
p53 sig.ling pathway (hsa04115 )
Aldosterone-regulated sodium reabsorption (hsa04960 )
Reactome Pathway
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )
RHO GTPases activate PKNs (R-HSA-5625740 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest (R-HSA-6804114 )
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B (R-HSA-75035 )
Regulation of localization of FOXO transcription factors (R-HSA-9614399 )
SARS-CoV-1 targets host intracellular signalling and regulatory pathways (R-HSA-9735871 )
SARS-CoV-2 targets host intracellular signalling and regulatory pathways (R-HSA-9755779 )
Activation of BAD and translocation to mitochondria (R-HSA-111447 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Ovarian cancer DISZJHAP Definitive Altered Expression [1]
Squamous cell carcinoma DISQVIFL Definitive Altered Expression [2]
Benign prostatic hyperplasia DISI3CW2 Strong Biomarker [3]
Bladder cancer DISUHNM0 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Posttranslational Modification [6]
Carcinoma DISH9F1N Strong Biomarker [7]
Carcinoma of esophagus DISS6G4D Strong Altered Expression [8]
Cervical cancer DISFSHPF Strong Biomarker [9]
Cervical carcinoma DIST4S00 Strong Biomarker [9]
Cholangiocarcinoma DIS71F6X Strong Biomarker [10]
Colon cancer DISVC52G Strong Altered Expression [11]
Colon carcinoma DISJYKUO Strong Altered Expression [11]
Colorectal neoplasm DISR1UCN Strong Altered Expression [12]
Ductal breast carcinoma in situ DISLCJY7 Strong Biomarker [13]
Endometrial cancer DISW0LMR Strong Altered Expression [14]
Endometrial carcinoma DISXR5CY Strong Altered Expression [14]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [15]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [16]
Gallbladder cancer DISXJUAF Strong Altered Expression [10]
Gallbladder carcinoma DISD6ACL Strong Altered Expression [10]
Gastric cancer DISXGOUK Strong Altered Expression [17]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [18]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [19]
Keloid DISV09JY Strong Biomarker [20]
Lung adenocarcinoma DISD51WR Strong Biomarker [21]
Lung cancer DISCM4YA Strong Posttranslational Modification [22]
Lung carcinoma DISTR26C Strong Posttranslational Modification [22]
Lung neoplasm DISVARNB Strong Biomarker [23]
Non-insulin dependent diabetes DISK1O5Z Strong Altered Expression [24]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [25]
Ovarian neoplasm DISEAFTY Strong Posttranslational Modification [26]
Pancreatic tumour DIS3U0LK Strong Biomarker [27]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [28]
Prostate neoplasm DISHDKGQ Strong Altered Expression [29]
Stomach cancer DISKIJSX Strong Altered Expression [17]
Urinary bladder cancer DISDV4T7 Strong Biomarker [4]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [4]
Adenocarcinoma DIS3IHTY moderate Altered Expression [21]
Corpus callosum, agenesis of DISO9P40 moderate Posttranslational Modification [30]
Esophageal cancer DISGB2VN Limited Altered Expression [8]
Melanoma DIS1RRCY Limited Biomarker [31]
Neoplasm of esophagus DISOLKAQ Limited Altered Expression [8]
Prostate cancer DISF190Y Limited Biomarker [32]
Prostate carcinoma DISMJPLE Limited Biomarker [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved 14-3-3 protein sigma (SFN) decreases the response to substance of Arsenic trioxide. [73]
Cytarabine DMZD5QR Approved 14-3-3 protein sigma (SFN) decreases the response to substance of Cytarabine. [55]
Mitoxantrone DMM39BF Approved 14-3-3 protein sigma (SFN) affects the response to substance of Mitoxantrone. [75]
Sulforaphane DMQY3L0 Investigative 14-3-3 protein sigma (SFN) affects the binding of Sulforaphane. [76]
------------------------------------------------------------------------------------
49 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 14-3-3 protein sigma (SFN). [33]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of 14-3-3 protein sigma (SFN). [34]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 14-3-3 protein sigma (SFN). [35]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 14-3-3 protein sigma (SFN). [36]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 14-3-3 protein sigma (SFN). [37]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 14-3-3 protein sigma (SFN). [38]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of 14-3-3 protein sigma (SFN). [39]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 14-3-3 protein sigma (SFN). [40]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of 14-3-3 protein sigma (SFN). [41]
Quercetin DM3NC4M Approved Quercetin increases the expression of 14-3-3 protein sigma (SFN). [42]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of 14-3-3 protein sigma (SFN). [43]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of 14-3-3 protein sigma (SFN). [44]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of 14-3-3 protein sigma (SFN). [45]
Decitabine DMQL8XJ Approved Decitabine increases the expression of 14-3-3 protein sigma (SFN). [46]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of 14-3-3 protein sigma (SFN). [47]
Panobinostat DM58WKG Approved Panobinostat increases the expression of 14-3-3 protein sigma (SFN). [48]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of 14-3-3 protein sigma (SFN). [49]
Bortezomib DMNO38U Approved Bortezomib increases the expression of 14-3-3 protein sigma (SFN). [50]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of 14-3-3 protein sigma (SFN). [51]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of 14-3-3 protein sigma (SFN). [52]
Etoposide DMNH3PG Approved Etoposide increases the expression of 14-3-3 protein sigma (SFN). [53]
Diclofenac DMPIHLS Approved Diclofenac increases the expression of 14-3-3 protein sigma (SFN). [45]
Cidofovir DMA13GD Approved Cidofovir increases the expression of 14-3-3 protein sigma (SFN). [54]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of 14-3-3 protein sigma (SFN). [56]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of 14-3-3 protein sigma (SFN). [53]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of 14-3-3 protein sigma (SFN). [54]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of 14-3-3 protein sigma (SFN). [54]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of 14-3-3 protein sigma (SFN). [54]
Gefitinib DM15F0X Approved Gefitinib decreases the expression of 14-3-3 protein sigma (SFN). [57]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of 14-3-3 protein sigma (SFN). [54]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of 14-3-3 protein sigma (SFN). [53]
Isoproterenol DMK7MEY Approved Isoproterenol decreases the expression of 14-3-3 protein sigma (SFN). [58]
Isoniazid DM5JVS3 Approved Isoniazid decreases the expression of 14-3-3 protein sigma (SFN). [59]
Chlorambucil DMRKE63 Approved Chlorambucil increases the expression of 14-3-3 protein sigma (SFN). [60]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of 14-3-3 protein sigma (SFN). [61]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of 14-3-3 protein sigma (SFN). [62]
Coprexa DMA0WEK Phase 3 Coprexa decreases the expression of 14-3-3 protein sigma (SFN). [63]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of 14-3-3 protein sigma (SFN). [64]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of 14-3-3 protein sigma (SFN). [65]
Tetrandrine DMAOJBX Phase 1 Tetrandrine increases the expression of 14-3-3 protein sigma (SFN). [67]
Flavonoid derivative 1 DMCQP0B Patented Flavonoid derivative 1 increases the expression of 14-3-3 protein sigma (SFN). [42]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of 14-3-3 protein sigma (SFN). [68]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of 14-3-3 protein sigma (SFN). [69]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of 14-3-3 protein sigma (SFN). [70]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of 14-3-3 protein sigma (SFN). [71]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of 14-3-3 protein sigma (SFN). [72]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of 14-3-3 protein sigma (SFN). [59]
Chrysin DM7V2LG Investigative Chrysin increases the expression of 14-3-3 protein sigma (SFN). [42]
Kaempferol DMHEMUB Investigative Kaempferol increases the expression of 14-3-3 protein sigma (SFN). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 49 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Gemcitabine DMSE3I7 Approved Gemcitabine increases the methylation of 14-3-3 protein sigma (SFN). [55]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of 14-3-3 protein sigma (SFN). [66]
------------------------------------------------------------------------------------

References

1 Expression profile and prognostic value of SFN in human ovarian cancer.Biosci Rep. 2019 May 2;39(5):BSR20190100. doi: 10.1042/BSR20190100. Print 2019 May 31.
2 Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry.J Proteome Res. 2008 May;7(5):2078-87. doi: 10.1021/pr7007797. Epub 2008 Apr 12.
3 Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing.Dis Markers. 2011;30(4):151-61. doi: 10.3233/DMA-2011-0790.
4 DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection.BMC Cancer. 2008 Aug 14;8:238. doi: 10.1186/1471-2407-8-238.
5 Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives.Biomed Pharmacother. 2020 Jan;121:109635. doi: 10.1016/j.biopha.2019.109635. Epub 2019 Nov 15.
6 Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy.Cancer Biol Ther. 2008 Jun;7(6):958-65. doi: 10.4161/cbt.7.6.5966. Epub 2008 Mar 20.
7 Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas.Int J Mol Med. 2006 Oct;18(4):547-57.
8 Reduced stratifin expression can serve as an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma.Dig Dis Sci. 2010 Sep;55(9):2552-60. doi: 10.1007/s10620-009-1065-0. Epub 2010 Jan 27.
9 LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis.BMC Cancer. 2019 Nov 28;19(1):1157. doi: 10.1186/s12885-019-6326-5.
10 Role of stratifin (14-3-3 sigma) in adenocarcinoma of gallbladder: A novel prognostic biomarker.Surg Oncol. 2020 Mar;32:57-62. doi: 10.1016/j.suronc.2019.10.022. Epub 2019 Nov 2.
11 Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer.Gene. 2016 Apr 25;581(1):75-84. doi: 10.1016/j.gene.2016.01.029. Epub 2016 Jan 19.
12 Over-expression of 14-3-3sigma in budding colorectal cancer cells modulates cell migration in the presence of tenascin-C.Oncol Rep. 2007 Dec;18(6):1451-6.
13 3D Mammary Epithelial Cell Models: A Goldmine of DCIS Biomarkers and Morphogenetic Mechanisms.Cancers (Basel). 2019 Jan 23;11(2):130. doi: 10.3390/cancers11020130.
14 Association of body mass index with ER, PR and 14-3-3 expression in tumor and stroma of type I and type II endometrial carcinoma.Oncotarget. 2017 Jun 27;8(26):42548-42559. doi: 10.18632/oncotarget.17209.
15 Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients.Ann Oncol. 2013 Nov;24(11):2813-8. doi: 10.1093/annonc/mdt370. Epub 2013 Oct 10.
16 Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma.J Proteome Res. 2011 Jun 3;10(6):2863-72. doi: 10.1021/pr200141c. Epub 2011 May 3.
17 The clinical implication of 14-3-3 sigma expression in primary gastrointestinal malignancy.Int J Oncol. 2004 Dec;25(6):1591-7.
18 RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage.Cell Cycle. 2004 Oct;3(10):1285-95. doi: 10.4161/cc.3.10.1155. Epub 2004 Oct 6.
19 Genomewide investigation of the clinical implications and molecular mechanism of long noncoding RNA LINC00668 and proteincoding genes in hepatocellular carcinoma.Int J Oncol. 2019 Oct;55(4):860-878. doi: 10.3892/ijo.2019.4858. Epub 2019 Aug 14.
20 Comparative proteomic analysis between normal skin and keloid scar.Br J Dermatol. 2010 Jun;162(6):1302-15. doi: 10.1111/j.1365-2133.2010.09660.x. Epub 2010 Feb 1.
21 Stratifin Inhibits SCF(FBW7) Formation and Blocks Ubiquitination of Oncoproteins during the Course of Lung Adenocarcinogenesis.Clin Cancer Res. 2019 May 1;25(9):2809-2820. doi: 10.1158/1078-0432.CCR-18-3631. Epub 2019 Feb 6.
22 Aberrant stratifin overexpression is regulated by tumor-associated CpG demethylation in lung adenocarcinoma.Am J Pathol. 2012 Apr;180(4):1653-62. doi: 10.1016/j.ajpath.2011.12.014. Epub 2012 Feb 4.
23 Stratifin accelerates progression of lung adenocarcinoma at an early stage.Mol Cancer. 2015 Jul 30;14:142. doi: 10.1186/s12943-015-0414-1.
24 Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4.Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C48-C62. doi: 10.1152/ajpcell.00091.2019. Epub 2019 Oct 16.
25 Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption.Cell Death Dis. 2018 Nov 14;9(11):1134. doi: 10.1038/s41419-018-1174-9.
26 Expression and methylation status of 14-3-3 sigma gene can characterize the different histological features of ovarian cancer.Biochem Biophys Res Commun. 2004 Apr 16;316(4):1156-62. doi: 10.1016/j.bbrc.2004.02.171.
27 14-3-3sigma Modulates pancreatic cancer cell survival and invasiveness.Clin Cancer Res. 2008 Dec 1;14(23):7614-23. doi: 10.1158/1078-0432.CCR-08-1366.
28 TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma.Int J Cancer. 2009 Oct 15;125(8):1985-91. doi: 10.1002/ijc.24431.
29 Sensitizing hormone-refractory prostate cancer cells to drug treatment by targeting 14-3-3sigma.Mol Cancer Ther. 2006 Apr;5(4):903-12. doi: 10.1158/1535-7163.MCT-05-0393.
30 Frequent downregulation of 14-3-3 sigma protein and hypermethylation of 14-3-3 sigma gene in salivary gland adenoid cystic carcinoma.Br J Cancer. 2004 Sep 13;91(6):1131-8. doi: 10.1038/sj.bjc.6602004.
31 MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1.Mol Med Rep. 2016 Jun;13(6):5241-7. doi: 10.3892/mmr.2016.5202. Epub 2016 Apr 28.
32 Nrf2 sensitizes prostate cancer cells to radiation via decreasing basal ROS levels.Biofactors. 2015 Jan-Feb;41(1):52-7. doi: 10.1002/biof.1200.
33 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
34 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
35 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
36 Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol Oncol. 2014 Jul;8(5):1026-42. doi: 10.1016/j.molonc.2014.04.002. Epub 2014 Apr 13.
37 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
38 p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 2011 Apr 21;6(4):e19198. doi: 10.1371/journal.pone.0019198.
39 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
40 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
41 Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010 Jan 31;268(1-2):31-9.
42 Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol. 2008 Jun;46(6):2042-53. doi: 10.1016/j.fct.2008.01.049. Epub 2008 Feb 7.
43 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
44 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
45 Gene expression profiling of rheumatoid arthritis synovial cells treated with antirheumatic drugs. J Biomol Screen. 2007 Apr;12(3):328-40. doi: 10.1177/1087057107299261. Epub 2007 Mar 22.
46 Cell cycle regulation of human endometrial stromal cells during decidualization. Reprod Sci. 2012 Aug;19(8):883-94. doi: 10.1177/1933719112438447. Epub 2012 Apr 24.
47 Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer. 2006 Sep 1;119(5):1164-75.
48 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
49 Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci. 2023 Feb 17;191(2):227-238. doi: 10.1093/toxsci/kfac131.
50 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
51 Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase. J Biol Chem. 2013 Oct 4;288(40):28792-800. doi: 10.1074/jbc.M113.491365. Epub 2013 Aug 12.
52 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
53 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
54 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
55 Reversible epigenetic regulation of 14-3-3 expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1. Mol Pharmacol. 2014 Nov;86(5):561-9. doi: 10.1124/mol.114.092544. Epub 2014 Sep 4.
56 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
57 Identification of genes linked to gefitinib treatment in prostate cancer cell lines with or without resistance to androgen: a clue to application of gefitinib to hormone-resistant prostate cancer. Oncol Rep. 2006 Jun;15(6):1453-60.
58 Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol Appl Pharmacol. 2014 Jan 15;274(2):302-12.
59 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
60 Differential effects of chemotherapeutic drugs versus the MDM-2 antagonist nutlin-3 on cell cycle progression and induction of apoptosis in SKW6.4 lymphoblastoid B-cells. J Cell Biochem. 2008 May 15;104(2):595-605. doi: 10.1002/jcb.21649.
61 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
62 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
63 Copper deprivation enhances the chemosensitivity of pancreatic cancer to rapamycin by mTORC1/2 inhibition. Chem Biol Interact. 2023 Sep 1;382:110546. doi: 10.1016/j.cbi.2023.110546. Epub 2023 Jun 7.
64 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
65 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
66 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
67 Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. Environ Toxicol. 2017 Jan;32(1):329-343. doi: 10.1002/tox.22238. Epub 2016 Jan 29.
68 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
69 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
70 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
71 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
72 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
73 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.
74 Reversible epigenetic regulation of 14-3-3 expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1. Mol Pharmacol. 2014 Nov;86(5):561-9. doi: 10.1124/mol.114.092544. Epub 2014 Sep 4.
75 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
76 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.