General Information of Drug Combination (ID: DCI8WAU)

Drug Combination Name
Dopamine Allopurinol
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Dopamine   DMPGUCF Allopurinol   DMLPAOB
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 5.3
Bliss Independence Score: 5.3
Loewe Additivity Score: 18.71
LHighest Single Agent (HSA) Score: 18.71

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Dopamine
Disease Entry ICD 11 Status REF
Acromegaly 5A60.0 Approved [2]
Carcinoid syndrome 5B10 Approved [2]
Parkinson disease 8A00.0 Approved [3]
Parkinsonian disorder N.A. Approved [2]
Postencephalitic Parkinson disease N.A. Approved [2]
Hypotension BA20-BA21 Phase 1 [3]
Dopamine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Dopamine D2 receptor (D2R) TTEX248 DRD2_HUMAN Agonist [9]
------------------------------------------------------------------------------------
Dopamine Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [10]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [11]
Vesicular amine transporter 2 (SLC18A2) DTT7VPB VMAT2_HUMAN Substrate [12]
Vesicular amine transporter 1 (SLC18A1) DTM953D VMAT1_HUMAN Substrate [12]
Synaptic vesicle glycoprotein 2C (SLC22B3) DT7A9GF SV2C_HUMAN Substrate [13]
Sodium-dependent dopamine transporter (SLC6A3) DT3BA8L SC6A3_HUMAN Substrate [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Dopamine Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [15]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [16]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [16]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [16]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [17]
Monoamine oxidase type B (MAO-B) DET2NXO AOFB_HUMAN Metabolism [18]
Sulfotransferase 1B1 (SULT1B1) DED5UR3 ST1B1_HUMAN Metabolism [19]
Dopamine dehydroxylase (dadH) DEL0D64 DADH_EGGLN Metabolism [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Dopamine Interacts with 76 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases Abundance [21]
Amine oxidase B (MAOB) OTTDFM1O AOFB_HUMAN Decreases Amination [22]
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [23]
Sodium-dependent dopamine transporter (SLC6A3) OT39XG28 SC6A3_HUMAN Increases Activity [24]
Synaptic vesicular amine transporter (SLC18A2) OTUOMMM6 VMAT2_HUMAN Decreases Activity [25]
Glial fibrillary acidic protein (GFAP) OTQ01ZAS GFAP_HUMAN Increases ADR [26]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [27]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [27]
Bcl-2-binding component 3, isoforms 3/4 (BBC3) OTUAXDAY BBC3B_HUMAN Increases Expression [27]
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Activity [28]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [28]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Activity [28]
Methionine synthase (MTR) OTF2K2TA METH_HUMAN Increases Activity [29]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [30]
POTE ankyrin domain family member F (POTEF) OTV3WXYE POTEF_HUMAN Increases Expression [6]
Citrate synthase, mitochondrial (CS) OTYLYXMO CISY_HUMAN Increases Expression [6]
ATP synthase subunit d, mitochondrial (ATP5PD) OTAJDLE2 ATP5H_HUMAN Increases Expression [6]
Prelamin-A/C (LMNA) OT3SG7ZR LMNA_HUMAN Increases Expression [6]
Fructose-bisphosphate aldolase A (ALDOA) OTWRFTIB ALDOA_HUMAN Increases Expression [6]
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) OTBPMIMW G3P_HUMAN Increases Expression [6]
ADP/ATP translocase 2 (SLC25A5) OT1XIBMN ADT2_HUMAN Increases Expression [6]
Cathepsin D (CTSD) OTQZ36F3 CATD_HUMAN Increases Expression [6]
Heat shock protein HSP 90-beta (HSP90AB1) OTR69EG7 HS90B_HUMAN Increases Expression [6]
Small ribosomal subunit protein uS2 (RPSA) OTJZHEGT RSSA_HUMAN Increases Expression [6]
POTE ankyrin domain family member I (POTEI) OTST4AVP POTEI_HUMAN Decreases Expression [6]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [6]
ADP/ATP translocase 3 (SLC25A6) OT9KAJP7 ADT3_HUMAN Increases Expression [6]
Annexin A3 (ANXA3) OTDD8OI7 ANXA3_HUMAN Increases Expression [6]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [6]
Endoplasmin (HSP90B1) OT02XLBR ENPL_HUMAN Increases Expression [6]
Histone H1.5 (H1-5) OTAN7RD9 H15_HUMAN Increases Expression [6]
Heat shock 70 kDa protein 6 (HSPA6) OTH4S7WB HSP76_HUMAN Increases Expression [6]
Nucleolin (NCL) OTBXPKMP NUCL_HUMAN Increases Expression [6]
Cofilin-1 (CFL1) OTT6D5MH COF1_HUMAN Increases Expression [6]
Myristoylated alanine-rich C-kinase substrate (MARCKS) OT7N056G MARCS_HUMAN Increases Expression [6]
Thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3) OTLB2WEU PRDX3_HUMAN Increases Expression [6]
Protein disulfide-isomerase A3 (PDIA3) OTHPQ0Q3 PDIA3_HUMAN Decreases Expression [6]
Serine hydroxymethyltransferase, mitochondrial (SHMT2) OT5NCAZN GLYM_HUMAN Increases Expression [6]
Prohibitin 1 (PHB1) OTZNXYS2 PHB1_HUMAN Increases Expression [6]
Stress-70 protein, mitochondrial (HSPA9) OT4TMVS9 GRP75_HUMAN Increases Expression [6]
Actin, cytoplasmic 1 (ACTB) OT1MCP2F ACTB_HUMAN Affects Expression [6]
Small ribosomal subunit protein RACK1 (RACK1) OTZBCQ1U RACK1_HUMAN Increases Expression [6]
Elongation factor 1-alpha 1 (EEF1A1) OT00THXS EF1A1_HUMAN Increases Expression [6]
Single-stranded DNA-binding protein, mitochondrial (SSBP1) OTH2PZWH SSBP_HUMAN Increases Expression [6]
Complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP) OTPYQX3K C1QBP_HUMAN Increases Expression [6]
Beta-actin-like protein 2 (ACTBL2) OTD6B81U ACTBL_HUMAN Decreases Expression [6]
5'-3' exonuclease PLD3 (PLD3) OTL07SP2 PLD3_HUMAN Affects Expression [6]
Septin-9 (SEPTIN9) OT1VMRFQ SEPT9_HUMAN Decreases Expression [6]
RuvB-like 1 (RUVBL1) OTWV19L7 RUVB1_HUMAN Increases Expression [6]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Expression [31]
Brain mitochondrial carrier protein 1 (SLC25A14) OT1ZQSKS UCP5_HUMAN Increases Expression [32]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Affects Binding [33]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Decreases Expression [34]
Insulin (INS) OTZ85PDU INS_HUMAN Increases Expression [35]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Phosphorylation [36]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [36]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [37]
D(1A) dopamine receptor (DRD1) OTLZPBT7 DRD1_HUMAN Increases Activity [38]
Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PCMT1) OTGYVSGU PIMT_HUMAN Decreases Expression [39]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [27]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [27]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [27]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [27]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Decreases Expression [27]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [27]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Metabolism [40]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Uptake [41]
Tyrosine 3-monooxygenase (TH) OT6ZORKP TY3H_HUMAN Increases Chemical Synthesis [42]
Amine oxidase A (MAOA) OT8NIWMQ AOFA_HUMAN Decreases Amination [22]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Metabolism [40]
Alpha-synuclein (SNCA) OTPWC1MR SYUA_HUMAN Increases Response To Substance [43]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [44]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [45]
Secretin (SCT) OTV3MLOO SECR_HUMAN Increases Metabolism [46]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [45]
GDP-mannose 4,6 dehydratase (GMDS) OTWV79YD GMDS_HUMAN Increases ADR [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 DOT(s)
Indication(s) of Allopurinol
Disease Entry ICD 11 Status REF
Gout FA25 Approved [4]
Hyperuricaemia 5C55.Y Approved [5]
Recurrent adult burkitt lymphoma 2A85.6 Approved [4]
Allopurinol Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Xanthine dehydrogenase/oxidase (XDH) TT7RJY8 XDH_HUMAN Inhibitor [48]
------------------------------------------------------------------------------------
Allopurinol Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic anion transporter 2 (SLC22A7) DT0OC1Q S22A7_HUMAN Substrate [49]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [50]
------------------------------------------------------------------------------------
Allopurinol Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
RNA cytidine acetyltransferase (hALP) DEZV4AP NAT10_HUMAN Metabolism [51]
------------------------------------------------------------------------------------
Allopurinol Interacts with 30 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Solute carrier family 22 member 7 (SLC22A7) OTKTNH1W S22A7_HUMAN Increases Transport [52]
HLA class I histocompatibility antigen, B alpha chain (HLA-B) OTNXFWY2 HLAB_HUMAN Increases Response To Substance [53]
HLA class I histocompatibility antigen, C alpha chain (HLA-C) OTV38BUJ HLAC_HUMAN Increases ADR [54]
HLA class I histocompatibility antigen, A alpha chain (HLA-A) OTAH14LU HLAA_HUMAN Increases ADR [55]
HLA class II histocompatibility antigen, DQ beta 1 chain (HLA-DQB1) OTVVI3UI DQB1_HUMAN Increases ADR [54]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Decreases Expression [56]
Serine/threonine-protein kinase/endoribonuclease IRE1 (ERN1) OTY9R6FZ ERN1_HUMAN Increases Expression [57]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [58]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Expression [59]
Apolipoprotein C-III (APOC3) OTW3520C APOC3_HUMAN Decreases Expression [57]
Apolipoprotein B-100 (APOB) OTH0UOCZ APOB_HUMAN Decreases Expression [57]
Protein disulfide-isomerase (P4HB) OTTYNYPF PDIA1_HUMAN Decreases Expression [57]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [60]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [60]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [57]
C-C motif chemokine 2 (CCL2) OTAD2HEL CCL2_HUMAN Increases Expression [59]
Platelet glycoprotein 4 (CD36) OT5CZWKY CD36_HUMAN Decreases Expression [57]
Cyclic AMP-dependent transcription factor ATF-6 alpha (ATF6) OTAFHAVI ATF6A_HUMAN Increases Expression [57]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [59]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [59]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [57]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Decreases Expression [57]
Cytochrome P450 4A11 (CYP4A11) OTPU5J0S CP4AB_HUMAN Increases Expression [61]
Peroxisome proliferator-activated receptor alpha (PPARA) OTK095PP PPARA_HUMAN Increases Expression [61]
Peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) OTM0A0DY ACOX1_HUMAN Increases Expression [61]
Angiopoietin-related protein 3 (ANGPTL3) OTCD5Z9W ANGL3_HUMAN Decreases Expression [57]
Glycophorin-A (GYPA) OTABU4YV GLPA_HUMAN Increases ADR [26]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases ADR [26]
Intercellular adhesion molecule 1 (ICAM1) OTTOIX77 ICAM1_HUMAN Increases ADR [26]
HLA class I histocompatibility antigen protein P5 (HCP5) OTV0YRI8 HCP5_HUMAN Increases ADR [62]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Dopamine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 940).
4 Allopurinol FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6795).
6 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
7 Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience. 2016 Oct 1;333:193-203. doi: 10.1016/j.neuroscience.2016.07.020. Epub 2016 Jul 20.
8 Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry. 2011 Sep;16(9):927-37, 881. doi: 10.1038/mp.2011.32. Epub 2011 Apr 19.
9 The Detection of Dopamine Gene Receptors (DRD1-DRD5) Expression on Human Peripheral Blood Lymphocytes by Real Time PCR. Iran J Allergy Asthma Immunol. 2004 Dec;3(4):169-74.
10 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
11 Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243-53.
12 SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med. 2013 Apr-Jun;34(2-3):360-72.
13 Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2253-E2262.
14 Characterization of VNTRs Within the Entire Region of SLC6A3 and Its Association with Hypertension. DNA Cell Biol. 2017 Mar;36(3):227-236.
15 Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics. 1998 Jun;8(3):251-8.
16 Pharmacogenetics of schizophrenia. Am J Med Genet. 2000 Spring;97(1):98-106.
17 Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):651-60.
18 Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32.
19 Molecular cloning, expression, and functional characterization of novel mouse sulfotransferases. Biochem Biophys Res Commun. 1998 Jun 29;247(3):681-6.
20 Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019 Jun 14;364(6445). pii: eaau6323.
21 Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. J Toxicol Sci. 2016 Feb;41(1):143-6.
22 Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine. Toxicol Lett. 2016 Jan 22;243:48-55.
23 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
24 Functional characterization of N-octyl 4-methylamphetamine variants and related bivalent compounds at the dopamine and serotonin transporters using Ca(2+) channels as sensors. Toxicol Appl Pharmacol. 2021 May 15;419:115513. doi: 10.1016/j.taap.2021.115513. Epub 2021 Mar 27.
25 The effect of rare human sequence variants on the function of vesicular monoamine transporter 2. Pharmacogenetics. 2004 Sep;14(9):587-94. doi: 10.1097/00008571-200409000-00003.
26 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
27 Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology. 2009 Jul;30(4):658-65. doi: 10.1016/j.neuro.2009.04.007. Epub 2009 May 4.
28 Inhibition of human glutathione S-transferases by dopamine, alpha-methyldopa and their 5-S-glutathionyl conjugates. Chem Biol Interact. 1994 Jan;90(1):87-99.
29 Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry. 2004 Apr;9(4):358-70.
30 Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening. Drug Metab Dispos. 2008 Jul;36(7):1322-31.
31 Induction of parkin expression in the presence of oxidative stress. Eur J Neurosci. 2006 Sep;24(5):1366-72. doi: 10.1111/j.1460-9568.2006.04998.x.
32 Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med. 2010 Sep 15;49(6):1023-35. doi: 10.1016/j.freeradbiomed.2010.06.017. Epub 2010 Jun 19.
33 Ligand binding and aggregation of pathogenic SOD1. Nat Commun. 2013;4:1758. doi: 10.1038/ncomms2750.
34 Dose-dependent separation of dopaminergic and adrenergic effects of epinine in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):429-37. doi: 10.1007/BF00172781.
35 Effect of drugs interacting with the dopaminergic receptors on glucose levels and insulin release in healthy and type 2 diabetic subjects. Am J Ther. 2008 Jul-Aug;15(4):397-402. doi: 10.1097/MJT.0b013e318160c353.
36 Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004 Aug 15;13(16):1745-54. doi: 10.1093/hmg/ddh180. Epub 2004 Jun 15.
37 Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med. 2007 Jun 30;39(3):376-84. doi: 10.1038/emm.2007.42.
38 Characterizing fucoxanthin as a selective dopamine D(3)/D(4) receptor agonist: Relevance to Parkinson's disease. Chem Biol Interact. 2019 Sep 1;310:108757. doi: 10.1016/j.cbi.2019.108757. Epub 2019 Jul 16.
39 Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience. 2014 May 16;267:263-76. doi: 10.1016/j.neuroscience.2014.03.001. Epub 2014 Mar 12.
40 Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun. 2000 Jan 7;267(1):80-4. doi: 10.1006/bbrc.1999.1935.
41 Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci. 2004 Mar 3;24(9):2212-25. doi: 10.1523/JNEUROSCI.4847-03.2004.
42 Expression of tyrosine hydroxylase increases the resistance of human neuroblastoma cells to oxidative insults. Toxicol Sci. 2010 Jan;113(1):150-7. doi: 10.1093/toxsci/kfp245. Epub 2009 Oct 8.
43 G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage. Neurochem Int. 2004 Oct;45(5):669-76. doi: 10.1016/j.neuint.2004.03.029.
44 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
45 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
46 Administration of secretin for autism alters dopamine metabolism in the central nervous system. Brain Dev. 2006 Mar;28(2):99-103. doi: 10.1016/j.braindev.2005.05.005. Epub 2005 Sep 15.
47 Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010 Jan;3(1):73-81.
48 Allopurinol: xanthine oxidase inhibitor. Tex Med. 1966 Jan;62(1):100-1.
49 Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Mol Pharmacol. 2002 Jul;62(1):7-14.
50 Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004 May;32(5):479-83.
51 Xanthine oxidase inhibition by allopurinol affects the reliability of urinary caffeine metabolic ratios as markers for N-acetyltransferase 2 and CYP1A2 activities. Eur J Clin Pharmacol. 1999 Jan;54(11):869-76.
52 Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005 May;57(5):573-8.
53 HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4134-9. doi: 10.1073/pnas.0409500102. Epub 2005 Mar 2.
54 A study of HLA class I and class II 4-digit allele level in Stevens-Johnson syndrome and toxic epidermal necrolysis. Int J Immunogenet. 2011 Aug;38(4):303-9. doi: 10.1111/j.1744-313X.2011.01011.x. Epub 2011 May 4.
55 Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics. 2011 May;21(5):303-7. doi: 10.1097/FPC.0b013e32834282b8.
56 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
57 Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol. 2021 Apr;37(2):151-175. doi: 10.1007/s10565-020-09537-1. Epub 2020 Jun 14.
58 Selection of drugs to test the specificity of the Tg.AC assay by screening for induction of the gadd153 promoter in vitro. Toxicol Sci. 2003 Aug;74(2):260-70. doi: 10.1093/toxsci/kfg113. Epub 2003 May 2.
59 Allopurinol induces innate immune responses through mitogen-activated protein kinase signaling pathways in HL-60 cells. J Appl Toxicol. 2016 Sep;36(9):1120-8. doi: 10.1002/jat.3272. Epub 2015 Dec 7.
60 Systemic drugs inducing non-immediate cutaneous adverse reactions and contact sensitizers evoke similar responses in THP-1 cells. J Appl Toxicol. 2015 Apr;35(4):398-406. doi: 10.1002/jat.3033. Epub 2014 Aug 4.
61 Allopurinol Protects Against Cholestatic Liver Injury in Mice Not Through Depletion of Uric Acid. Toxicol Sci. 2021 May 27;181(2):295-305. doi: 10.1093/toxsci/kfab034.
62 Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013 Feb;93(2):153-8. doi: 10.1038/clpt.2012.209. Epub 2012 Oct 17.