General Information of Drug Off-Target (DOT) (ID: OTITX14U)

DOT Name Class E basic helix-loop-helix protein 40 (BHLHE40)
Synonyms
bHLHe40; Class B basic helix-loop-helix protein 2; bHLHb2; Differentially expressed in chondrocytes protein 1; DEC1; Enhancer-of-split and hairy-related protein 2; SHARP-2; Stimulated by retinoic acid gene 13 protein
Gene Name BHLHE40
Related Disease
Hepatocellular carcinoma ( )
Lung adenocarcinoma ( )
Adult glioblastoma ( )
Advanced cancer ( )
Alzheimer disease ( )
Autoimmune disease ( )
Bipolar depression ( )
Bipolar disorder ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of esophagus ( )
Clear cell renal carcinoma ( )
Colon carcinoma ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Esophageal cancer ( )
Gastric cancer ( )
Glioblastoma multiforme ( )
Glioma ( )
Head-neck squamous cell carcinoma ( )
Hypothyroidism ( )
Lung cancer ( )
Lung carcinoma ( )
Major depressive disorder ( )
Myocardial ischemia ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Nervous system inflammation ( )
Non-small-cell lung cancer ( )
Obesity ( )
Schizophrenia ( )
Sleep-wake disorder ( )
Squamous cell carcinoma ( )
Stomach cancer ( )
Triple negative breast cancer ( )
Carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Esophageal squamous cell carcinoma ( )
Melanoma ( )
Myocardial infarction ( )
Osteoporosis ( )
Pancreatic cancer ( )
Prostate neoplasm ( )
UniProt ID
BHE40_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07527 ; PF00010
Sequence
MERIPSAQPPPACLPKAPGLEHGDLPGMYPAHMYQVYKSRRGIKRSEDSKETYKLPHRLI
EKKRRDRINECIAQLKDLLPEHLKLTTLGHLEKAVVLELTLKHVKALTNLIDQQQQKIIA
LQSGLQAGELSGRNVETGQEMFCSGFQTCAREVLQYLAKHENTRDLKSSQLVTHLHRVVS
ELLQGGTSRKPSDPAPKVMDFKEKPSSPAKGSEGPGKNCVPVIQRTFAHSSGEQSGSDTD
TDSGYGGESEKGDLRSEQPCFKSDHGRRFTMGERIGAIKQESEEPPTKKNRMQLSDDEGH
FTSSDLISSPFLGPHPHQPPFCLPFYLIPPSATAYLPMLEKCWYPTSVPVLYPGLNASAA
ALSSFMNPDKISAPLLMPQRLPSPLPAHPSVDSSVLLQALKPIPPLNLETKD
Function
Transcriptional repressor involved in the regulation of the circadian rhythm by negatively regulating the activity of the clock genes and clock-controlled genes. Acts as the negative limb of a novel autoregulatory feedback loop (DEC loop) which differs from the one formed by the PER and CRY transcriptional repressors (PER/CRY loop). Both these loops are interlocked as it represses the expression of PER1/2 and in turn is repressed by PER1/2 and CRY1/2. Represses the activity of the circadian transcriptional activator: CLOCK-BMAL1|BMAL2 heterodimer by competing for the binding to E-box elements (5'-CACGTG-3') found within the promoters of its target genes. Negatively regulates its own expression and the expression of DBP and BHLHE41/DEC2. Acts as a corepressor of RXR and the RXR-LXR heterodimers and represses the ligand-induced RXRA and NR1H3/LXRA transactivation activity. May be involved in the regulation of chondrocyte differentiation via the cAMP pathway. Represses the transcription of NR0B2 and attentuates the transactivation of NR0B2 by the CLOCK-BMAL1 complex. Drives the circadian rhythm of blood pressure through transcriptional repression of ATP1B1 in the cardiovascular system.
Tissue Specificity Expressed in cartilage, spleen, intestine, lung, and to a lesser extent in heart, brain, liver, muscle and stomach.
KEGG Pathway
Circadian rhythm (hsa04710 )
Reactome Pathway
BMAL1 (R-HSA-1368108 )

Molecular Interaction Atlas (MIA) of This DOT

44 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Definitive Altered Expression [1]
Lung adenocarcinoma DISD51WR Definitive Biomarker [2]
Adult glioblastoma DISVP4LU Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Altered Expression [4]
Alzheimer disease DISF8S70 Strong Genetic Variation [5]
Autoimmune disease DISORMTM Strong Altered Expression [6]
Bipolar depression DISA75FU Strong Biomarker [7]
Bipolar disorder DISAM7J2 Strong Biomarker [7]
Breast cancer DIS7DPX1 Strong Biomarker [8]
Breast carcinoma DIS2UE88 Strong Biomarker [8]
Carcinoma of esophagus DISS6G4D Strong Biomarker [9]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [10]
Colon carcinoma DISJYKUO Strong Biomarker [11]
Endometrial cancer DISW0LMR Strong Biomarker [12]
Endometrial carcinoma DISXR5CY Strong Biomarker [12]
Esophageal cancer DISGB2VN Strong Biomarker [9]
Gastric cancer DISXGOUK Strong Altered Expression [13]
Glioblastoma multiforme DISK8246 Strong Altered Expression [14]
Glioma DIS5RPEH Strong Biomarker [15]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [16]
Hypothyroidism DISR0H6D Strong Genetic Variation [17]
Lung cancer DISCM4YA Strong Altered Expression [18]
Lung carcinoma DISTR26C Strong Altered Expression [18]
Major depressive disorder DIS4CL3X Strong Genetic Variation [19]
Myocardial ischemia DISFTVXF Strong Biomarker [20]
Neoplasm DISZKGEW Strong Biomarker [8]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [9]
Nervous system inflammation DISB3X5A Strong Biomarker [21]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [18]
Obesity DIS47Y1K Strong Biomarker [22]
Schizophrenia DISSRV2N Strong Biomarker [23]
Sleep-wake disorder DISOBM0Q Strong Biomarker [7]
Squamous cell carcinoma DISQVIFL Strong Altered Expression [24]
Stomach cancer DISKIJSX Strong Altered Expression [13]
Triple negative breast cancer DISAMG6N Strong Altered Expression [25]
Carcinoma DISH9F1N moderate Biomarker [26]
Prostate cancer DISF190Y moderate Biomarker [27]
Prostate carcinoma DISMJPLE moderate Biomarker [27]
Esophageal squamous cell carcinoma DIS5N2GV Limited Altered Expression [28]
Melanoma DIS1RRCY Limited Biomarker [29]
Myocardial infarction DIS655KI Limited Altered Expression [30]
Osteoporosis DISF2JE0 Limited Altered Expression [31]
Pancreatic cancer DISJC981 Limited Altered Expression [32]
Prostate neoplasm DISHDKGQ Limited Biomarker [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Class E basic helix-loop-helix protein 40 (BHLHE40) decreases the response to substance of Arsenic. [81]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Class E basic helix-loop-helix protein 40 (BHLHE40). [34]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Class E basic helix-loop-helix protein 40 (BHLHE40). [68]
------------------------------------------------------------------------------------
49 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [35]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [36]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [37]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [38]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [39]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [40]
Quercetin DM3NC4M Approved Quercetin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [41]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [42]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [43]
Testosterone DM7HUNW Approved Testosterone increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [44]
Triclosan DMZUR4N Approved Triclosan increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [45]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [46]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [47]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [48]
Progesterone DMUY35B Approved Progesterone increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [49]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [50]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [51]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [52]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [53]
Ethanol DMDRQZU Approved Ethanol increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [54]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [55]
Fenofibrate DMFKXDY Approved Fenofibrate decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [56]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [56]
Methoxsalen DME8FZ9 Approved Methoxsalen decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [57]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [58]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [59]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [60]
Chlorpromazine DMBGZI3 Phase 3 Trial Chlorpromazine increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [61]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [40]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [62]
Phenol DM1QSM3 Phase 2/3 Phenol increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [63]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [64]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [65]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [66]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [67]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [69]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [70]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [40]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [71]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [72]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [73]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [74]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [75]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [76]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [77]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [78]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [41]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [79]
PP-242 DM2348V Investigative PP-242 decreases the expression of Class E basic helix-loop-helix protein 40 (BHLHE40). [80]
------------------------------------------------------------------------------------
⏷ Show the Full List of 49 Drug(s)

References

1 The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1.Pharmacol Res. 2016 Mar;105:121-33. doi: 10.1016/j.phrs.2016.01.025. Epub 2016 Jan 22.
2 Embryo-chondrocyte expressed gene 1, downregulating hypoxia-inducible factor 1alpha, is another marker of lung tumor hypoxia.Acta Pharmacol Sin. 2007 Apr;28(4):549-58. doi: 10.1111/j.1745-7254.2007.00516.x.
3 Induction of basic helix-loop-helix protein DEC1 (BHLHB2)/Stra13/Sharp2 in response to the cyclic adenosine monophosphate pathway.Eur J Cell Biol. 2001 May;80(5):329-34. doi: 10.1078/0171-9335-00167.
4 The antitumor properties of metformin and phenformin reflect their ability to inhibit the actions of differentiated embryo chondrocyte 1.Cancer Manag Res. 2019 Jul 15;11:6567-6579. doi: 10.2147/CMAR.S210637. eCollection 2019.
5 Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study.Lancet Neurol. 2016 Jul;15(8):811-819. doi: 10.1016/S1474-4422(16)30030-8. Epub 2016 May 11.
6 CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response.J Exp Med. 2013 Jul 29;210(8):1603-19. doi: 10.1084/jem.20122387. Epub 2013 Jul 22.
7 Circadian polymorphisms in night owls, in bipolars, and in non-24-hour sleep cycles.Psychiatry Investig. 2014 Oct;11(4):345-62. doi: 10.4306/pi.2014.11.4.345. Epub 2014 Oct 20.
8 Interaction with SP1, but not binding to the E-box motifs, is responsible for BHLHE40/DEC1-induced transcriptional suppression of CLDN1 and cell invasion in MCF-7 cells.Mol Carcinog. 2018 Sep;57(9):1116-1129. doi: 10.1002/mc.22829. Epub 2018 May 2.
9 A role for the clock period circadian regulator 2 gene in regulating the clock gene network in human oral squamous cell carcinoma cells.Oncol Lett. 2018 Apr;15(4):4185-4192. doi: 10.3892/ol.2018.7825. Epub 2018 Jan 19.
10 Suppression of PGC-1 Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma.Cell Rep. 2015 Jul 7;12(1):116-127. doi: 10.1016/j.celrep.2015.06.006. Epub 2015 Jun 25.
11 Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation.Biochem J. 2002 Oct 15;367(Pt 2):413-22. doi: 10.1042/BJ20020514.
12 Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells.Oncotarget. 2019 Jul 23;10(45):4640-4654. doi: 10.18632/oncotarget.27061. eCollection 2019 Jul 23.
13 DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression.Gastric Cancer. 2018 Jul;21(4):632-642. doi: 10.1007/s10120-017-0780-z. Epub 2017 Dec 4.
14 Dec1 expression predicts prognosis and the response to temozolomide chemotherapy in patients with glioma.Mol Med Rep. 2016 Dec;14(6):5626-5636. doi: 10.3892/mmr.2016.5921. Epub 2016 Nov 3.
15 FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG.J Exp Clin Cancer Res. 2019 Jan 28;38(1):37. doi: 10.1186/s13046-018-0991-0.
16 A novel functional DEC1 promoter polymorphism -249T>C reduces risk of squamous cell carcinoma of the head and neck.Carcinogenesis. 2010 Dec;31(12):2082-90. doi: 10.1093/carcin/bgq198. Epub 2010 Oct 8.
17 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
18 The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells.Tumour Biol. 2013 Jun;34(3):1641-50. doi: 10.1007/s13277-013-0697-z. Epub 2013 Feb 20.
19 Significant role of gene-gene interactions of clock genes in mood disorder.J Affect Disord. 2019 Oct 1;257:510-517. doi: 10.1016/j.jad.2019.06.056. Epub 2019 Jul 2.
20 Cardioplegia prevents ischemia-induced transcriptional alterations of cytoprotective genes in rat hearts: a DNA microarray study.J Thorac Cardiovasc Surg. 2005 Oct;130(4):1151. doi: 10.1016/j.jtcvs.2005.06.027.
21 Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation.Nat Commun. 2014 Apr 3;5:3551. doi: 10.1038/ncomms4551.
22 Deficiency of the basic helix-loop-helix transcription factor DEC1 prevents obesity induced by a high-fat diet in mice.Genes Cells. 2018 Jul 3. doi: 10.1111/gtc.12607. Online ahead of print.
23 Changes in gene expression after phencyclidine administration in developing rats: a potential animal model for schizophrenia.Int J Dev Neurosci. 2011 May;29(3):351-8. doi: 10.1016/j.ijdevneu.2010.07.234. Epub 2010 Aug 5.
24 Isolation and mutational analysis of a novel human cDNA, DEC1 (deleted in esophageal cancer 1), derived from the tumor suppressor locus in 9q32.Genes Chromosomes Cancer. 2000 Feb;27(2):169-76.
25 BHLHE40 confers a pro-survival and pro-metastatic phenotype to breast cancer cells by modulating HBEGF secretion.Breast Cancer Res. 2018 Oct 1;20(1):117. doi: 10.1186/s13058-018-1046-3.
26 DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter.J Biol Chem. 2003 May 9;278(19):16899-907. doi: 10.1074/jbc.M300596200. Epub 2003 Mar 6.
27 Correlation between DEC1/DEC2 and epithelialmesenchymal transition in human prostate cancer PC? cells.Mol Med Rep. 2018 Oct;18(4):3859-3865. doi: 10.3892/mmr.2018.9367. Epub 2018 Aug 9.
28 Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma.PLoS One. 2012;7(7):e41862. doi: 10.1371/journal.pone.0041862. Epub 2012 Jul 23.
29 Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells.Oncogene. 2012 May 10;31(19):2461-70. doi: 10.1038/onc.2011.425. Epub 2011 Sep 26.
30 Dec1 Deficiency Suppresses Cardiac Perivascular Fibrosis Induced by Transverse Aortic Constriction.Int J Mol Sci. 2019 Oct 8;20(19):4967. doi: 10.3390/ijms20194967.
31 Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3/-catenin integrated signaling pathway.Biochem Pharmacol. 2017 Jul 15;136:109-121. doi: 10.1016/j.bcp.2017.04.010. Epub 2017 Apr 11.
32 Research on circadian clock genes in common abdominal malignant tumors.Chronobiol Int. 2019 Jul;36(7):906-918. doi: 10.1080/07420528.2018.1477792. Epub 2019 Apr 24.
33 Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis.Dis Markers. 2015;2015:241301. doi: 10.1155/2015/241301. Epub 2015 Sep 28.
34 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
35 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
36 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
37 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
38 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
39 Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicol In Vitro. 2021 Jun;73:105107. doi: 10.1016/j.tiv.2021.105107. Epub 2021 Feb 3.
40 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
41 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
42 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
43 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
44 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
45 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
46 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
47 Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells. Eur J Pharmacol. 2014 Jun 5;732:60-7.
48 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
49 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
50 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
51 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
52 Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther. 2008 Oct;7(10):1607-18.
53 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
54 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
55 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
56 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
57 Down regulation of differentiated embryonic chondrocytes 1 (DEC1) is involved in 8-methoxypsoralen-induced apoptosis in HepG2 cells. Toxicology. 2012 Nov 15;301(1-3):58-65. doi: 10.1016/j.tox.2012.06.022. Epub 2012 Jul 11.
58 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
59 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
60 The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005 Jun 15;11(12):4610-9.
61 Effects of chlorpromazine with and without UV irradiation on gene expression of HepG2 cells. Mutat Res. 2005 Aug 4;575(1-2):47-60. doi: 10.1016/j.mrfmmm.2005.03.002. Epub 2005 Apr 26.
62 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
63 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
64 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
65 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
66 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
67 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
68 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
69 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
70 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
71 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
72 Identification of gene markers for formaldehyde exposure in humans. Environ Health Perspect. 2007 Oct;115(10):1460-6. doi: 10.1289/ehp.10180.
73 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
74 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
75 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
76 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
77 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
78 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
79 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
80 Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci Rep. 2019 Jan 24;9(1):675.
81 Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol Appl Pharmacol. 2008 Jan 15;226(2):199-205. doi: 10.1016/j.taap.2007.09.004. Epub 2007 Sep 15.