General Information of Drug Combination (ID: DCQJL04)

Drug Combination Name
Sorafenib Verapamil
Indication
Disease Entry Status REF
DD2 Investigative [1]
Component Drugs Sorafenib   DMS8IFC Verapamil   DMA7PEW
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: DD2
Zero Interaction Potency (ZIP) Score: 3.309
Bliss Independence Score: 10.755
Loewe Additivity Score: 0.769
LHighest Single Agent (HSA) Score: 1.983

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Sorafenib
Disease Entry ICD 11 Status REF
Adenocarcinoma 2D40 Approved [2]
Carcinoma 2A00-2F9Z Approved [2]
Clear cell renal carcinoma N.A. Approved [2]
Lung cancer 2C25.0 Approved [2]
Medullary thyroid gland carcinoma N.A. Approved [2]
Non-small-cell lung cancer 2C25.Y Approved [2]
Renal cell carcinoma 2C90 Approved [3]
Thyroid cancer 2D10 Approved [2]
Hepatocellular carcinoma 2C12.02 Phase 3 [3]
Myelodysplastic syndrome 2A37 Phase 2 [3]
Sorafenib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Modulator [12]
Platelet-derived growth factor receptor beta (PDGFRB) TTI7421 PGFRB_HUMAN Modulator [12]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [13]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Modulator [12]
------------------------------------------------------------------------------------
Sorafenib Interacts with 7 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [14]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [15]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [16]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [17]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [18]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [17]
RalBP1-associated Eps domain-containing protein 2 (RALBP1) DTYEM9B REPS2_HUMAN Substrate [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DTP(s)
Sorafenib Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [20]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [21]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [22]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [22]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [20]
UDP-glucuronosyltransferase 1A9 (UGT1A9) DE85D2P UD19_HUMAN Metabolism [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Sorafenib Interacts with 112 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [24]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Affects Response To Substance [25]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Phosphorylation [26]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [27]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [28]
DNA damage-inducible transcript 4 protein (DDIT4) OTHY8SY4 DDIT4_HUMAN Increases Expression [28]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [29]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [30]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [30]
Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) OTFBU4GD P3C2A_HUMAN Decreases Expression [7]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [7]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [7]
GTPase NRas (NRAS) OTVQ1DG3 RASN_HUMAN Decreases Expression [7]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Decreases Expression [7]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [7]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Decreases Expression [7]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [7]
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) OTTOMI8J PK3CA_HUMAN Decreases Expression [7]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [7]
Cyclin-dependent kinase 9 (CDK9) OT2B7OGB CDK9_HUMAN Decreases Expression [7]
Growth factor receptor-bound protein 2 (GRB2) OTOP7LTE GRB2_HUMAN Decreases Expression [7]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [7]
Interferon regulatory factor 5 (IRF5) OT8SIIAP IRF5_HUMAN Increases Expression [7]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [7]
Serine/threonine-protein kinase PLK3 (PLK3) OT19CT2Z PLK3_HUMAN Increases Expression [7]
Serine/threonine-protein kinase PLK2 (PLK2) OTKMJXJ8 PLK2_HUMAN Increases Expression [7]
Histone deacetylase 6 (HDAC6) OT9W9MXQ HDAC6_HUMAN Decreases Expression [7]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [28]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Decreases Expression [31]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Decreases Expression [32]
Zinc finger protein SNAI2 (SNAI2) OT7Y8EJ2 SNAI2_HUMAN Decreases Expression [8]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Ubiquitination [33]
Growth arrest and DNA damage-inducible protein GADD45 beta (GADD45B) OTL9I7LO GA45B_HUMAN Increases Expression [34]
Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) OTYG179K PR15A_HUMAN Increases Expression [9]
Growth arrest and DNA damage-inducible protein GADD45 gamma (GADD45G) OT8V1J4M GA45G_HUMAN Increases Expression [35]
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Affects Localization [32]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Activity [36]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Decreases Expression [37]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Activity [38]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [39]
RAF proto-oncogene serine/threonine-protein kinase (RAF1) OT51LSFO RAF1_HUMAN Decreases Activity [26]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Expression [40]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [34]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [41]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Expression [42]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Phosphorylation [32]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Activity [43]
High mobility group protein B1 (HMGB1) OT4B7CPF HMGB1_HUMAN Increases Expression [39]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [44]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [36]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [24]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [45]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Increases Expression [8]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Decreases Activity [46]
Serine/threonine-protein kinase B-raf (BRAF) OT7S81XQ BRAF_HUMAN Decreases Activity [47]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Phosphorylation [48]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [28]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [49]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [50]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [51]
G1/S-specific cyclin-D2 (CCND2) OTDULQF9 CCND2_HUMAN Decreases Expression [51]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [45]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [52]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Decreases Phosphorylation [26]
Dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) OTUE7Z91 MP2K2_HUMAN Decreases Phosphorylation [47]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [53]
Signal transducer and activator of transcription 5A (STAT5A) OTBSJGN3 STA5A_HUMAN Decreases Activity [54]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [55]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Decreases Phosphorylation [37]
Mitogen-activated protein kinase 9 (MAPK9) OTCEVJ9E MK09_HUMAN Decreases Phosphorylation [37]
Dual specificity mitogen-activated protein kinase kinase 4 (MAP2K4) OTZPZX11 MP2K4_HUMAN Decreases Phosphorylation [37]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [36]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [56]
CCAAT/enhancer-binding protein delta (CEBPD) OTNBIPMY CEBPD_HUMAN Increases Expression [35]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [55]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Response To Substance [57]
Stanniocalcin-1 (STC1) OTGVVXYF STC1_HUMAN Decreases Expression [58]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [59]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [41]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Expression [39]
Sestrin-2 (SESN2) OT889IXY SESN2_HUMAN Increases Expression [60]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [61]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [62]
Cyclin-dependent kinase 6 (CDK6) OTR95N0X CDK6_HUMAN Decreases Expression [45]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Phosphorylation [47]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Cleavage [32]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [32]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [63]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [64]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [49]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [65]
Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) OTXEE550 APR_HUMAN Decreases Expression [66]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [10]
Mitogen-activated protein kinase 14 (MAPK14) OT5TCO3O MK14_HUMAN Decreases Expression [67]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Decreases Expression [32]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [68]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [10]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [36]
Serine/threonine-protein kinase PINK1, mitochondrial (PINK1) OT50NR57 PINK1_HUMAN Increases Expression [33]
Eukaryotic translation initiation factor 2A (EIF2A) OTWXELQP EIF2A_HUMAN Increases Phosphorylation [9]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [69]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [70]
Ubiquitin carboxyl-terminal hydrolase CYLD (CYLD) OT37FKH0 CYLD_HUMAN Increases Expression [27]
Diablo IAP-binding mitochondrial protein (DIABLO) OTHJ9MCZ DBLOH_HUMAN Affects Localization [66]
Eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) OT0DZGY4 E2AK3_HUMAN Increases Phosphorylation [9]
E3 ubiquitin-protein ligase TRIM62 (TRIM62) OT15YO6N TRI62_HUMAN Affects Response To Substance [71]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Response To Substance [32]
ATP-binding cassette sub-family C member 3 (ABCC3) OTC3IJV4 MRP3_HUMAN Affects Response To Substance [25]
Hepatocyte growth factor (HGF) OTGHUA23 HGF_HUMAN Decreases Response To Substance [72]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Affects Response To Substance [25]
Receptor-type tyrosine-protein kinase FLT3 (FLT3) OTMSRYMK FLT3_HUMAN Increases Response To Substance [61]
Na(+)/citrate cotransporter (SLC13A5) OTPH1TA7 S13A5_HUMAN Decreases Response To Substance [73]
------------------------------------------------------------------------------------
⏷ Show the Full List of 112 DOT(s)
Indication(s) of Verapamil
Disease Entry ICD 11 Status REF
Angina pectoris BA40 Approved [4]
Atrial fibrillation BC81.3 Approved [4]
Classic phenylketonuria N.A. Approved [4]
Hypertension BA00-BA04 Approved [5]
Malignant essential hypertension BA00 Approved [4]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 2/3 [6]
Verapamil Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated calcium channel alpha Cav3.1 (CACNA1G) TT729IR CAC1G_HUMAN Blocker [74]
HUMAN two pore channel subtype 2 (TPC2) TTHQJ2Y TPC2_HUMAN Blocker [75]
------------------------------------------------------------------------------------
Verapamil Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 1 (ABCC1) DTSYQGK MRP1_HUMAN Substrate [76]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [77]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [78]
Multidrug resistance protein 3 (ABCB4) DTZRMK5 MDR3_HUMAN Substrate [79]
Organic cation/carnitine transporter 2 (SLC22A5) DT3HUVD S22A5_HUMAN Substrate [80]
Organic cation/carnitine transporter 1 (SLC22A4) DT2EG60 S22A4_HUMAN Substrate [81]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Verapamil Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [82]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [83]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [84]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [85]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [86]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [85]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [87]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [88]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [85]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [89]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Verapamil Interacts with 41 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [90]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [91]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [92]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [84]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Activity [84]
Multidrug and toxin extrusion protein 2 (SLC47A2) OTF2CNRD S47A2_HUMAN Decreases Activity [93]
Dynamin-1-like protein (DNM1L) OTXK1Q1G DNM1L_HUMAN Increases Phosphorylation [94]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [95]
Organic cation/carnitine transporter 2 (SLC22A5) OTC36TYB S22A5_HUMAN Decreases Activity [96]
ATP-binding cassette sub-family C member 6 (ABCC6) OTZT0LKT MRP6_HUMAN Decreases Activity [97]
Metalloproteinase inhibitor 1 (TIMP1) OTOXC51H TIMP1_HUMAN Affects Expression [98]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [99]
Natriuretic peptides A (NPPA) OTMQNTNX ANF_HUMAN Increases Expression [100]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Increases Expression [101]
Platelet basic protein (PPBP) OT1FHGQS CXCL7_HUMAN Decreases Expression [102]
Platelet factor 4 (PF4) OTEMJU68 PLF4_HUMAN Decreases Expression [102]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Affects Expression [98]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [103]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [104]
Clusterin (CLU) OTQGG0JM CLUS_HUMAN Affects Expression [98]
Neuromodulin (GAP43) OT2OTGGV NEUM_HUMAN Affects Expression [98]
Phosphatidylcholine translocator ABCB4 (ABCB4) OTE6PY83 MDR3_HUMAN Decreases Expression [105]
Potassium voltage-gated channel subfamily A member 3 (KCNA3) OTXSP3AA KCNA3_HUMAN Decreases Activity [106]
Galanin peptides (GAL) OTB3VPTO GALA_HUMAN Affects Expression [98]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Affects Binding [107]
MHC class II transactivator (CIITA) OTRJNZFO C2TA_HUMAN Affects Expression [108]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Decreases Activity [109]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Affects Binding [107]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Affects Binding [107]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [104]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Affects Localization [103]
Multidrug and toxin extrusion protein 1 (SLC47A1) OTZX0U5Q S47A1_HUMAN Decreases Activity [110]
Potassium voltage-gated channel subfamily D member 3 (KCND3) OTRPIH7J KCND3_HUMAN Decreases Activity [111]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Increases Response To Substance [112]
Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) OT8SPJNX KCNQ1_HUMAN Increases ADR [113]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Increases ADR [113]
Calcium-activated potassium channel subunit beta-1 (KCNMB1) OTO4KNJ4 KCMB1_HUMAN Affects Response To Substance [114]
Beta-1 adrenergic receptor (ADRB1) OTQBWN4U ADRB1_HUMAN Affects Response To Substance [115]
Beta-1 adrenergic receptor (ADRB1) OTQBWN4U ADRB1_HUMAN Increases Response [115]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases ADR [113]
Potassium voltage-gated channel subfamily E member 1 (KCNE1) OTZNQUW9 KCNE1_HUMAN Increases ADR [113]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Sorafenib FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5711).
4 Verapamil FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2406).
6 ClinicalTrials.gov (NCT04351763) Amiodarone or Verapamil in COVID-19 Hospitalized Patients With Symptoms. U.S. National Institutes of Health.
7 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
8 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
9 The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007 Aug;27(15):5499-513. doi: 10.1128/MCB.01080-06. Epub 2007 Jun 4.
10 Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008 Apr;22(4):808-18. doi: 10.1038/sj.leu.2405098. Epub 2008 Jan 17.
11 Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Toxicol In Vitro. 2018 Sep;51:74-82. doi: 10.1016/j.tiv.2018.04.010. Epub 2018 Apr 24.
12 Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.Mol Cancer Ther.2008 Oct;7(10):3129-40.
13 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
14 Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433-5.
15 Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26.
16 Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm. 2011 Apr 4;8(2):571-82.
17 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
18 Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma
19 Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010 Mar 15;126(6):1327-38.
20 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
21 Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5788-95.
22 Drug Interactions Flockhart Table
23 Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4.
24 Differential inhibition of human CYP2C8 and molecular docking interactions elicited by sorafenib and its major N-oxide metabolite. Chem Biol Interact. 2021 Apr 1;338:109401. doi: 10.1016/j.cbi.2021.109401. Epub 2021 Feb 5.
25 The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 2013 Nov 11;8(11):e78675. doi: 10.1371/journal.pone.0078675. eCollection 2013.
26 Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther. 2009 Jan;8(1):152-9. doi: 10.1158/1535-7163.MCT-08-0553.
27 Down-regulation of CYLD as a trigger for NF-B activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells. Int J Oncol. 2011 Jan;38(1):121-31.
28 Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol. 2011 Aug 1;82(3):216-26. doi: 10.1016/j.bcp.2011.04.011. Epub 2011 May 13.
29 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
30 Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012 Sep 10;12:402.
31 The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res. 2007 Oct 1;67(19):9490-500. doi: 10.1158/0008-5472.CAN-07-0598.
32 Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005 Oct 21;280(42):35217-27. doi: 10.1074/jbc.M506551200. Epub 2005 Aug 18.
33 Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem. 2017 Sep 8;292(36):15105-15120. doi: 10.1074/jbc.M117.783175. Epub 2017 Jul 3.
34 Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2010 Nov 15;70(22):9309-18. doi: 10.1158/0008-5472.CAN-10-1033. Epub 2010 Nov 9.
35 Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget. 2015 Sep 29;6(29):27953-65. doi: 10.18632/oncotarget.4446.
36 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
37 Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ Toxicol. 2018 Dec;33(12):1237-1244. doi: 10.1002/tox.22630. Epub 2018 Sep 6.
38 Sorafenib inhibits transforming growth factor 1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011 May;53(5):1708-18. doi: 10.1002/hep.24254.
39 Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol In Vitro. 2021 Mar;71:105063. doi: 10.1016/j.tiv.2020.105063. Epub 2020 Dec 1.
40 Sorafenib is an antagonist of the aryl hydrocarbon receptor. Toxicology. 2022 Mar 30;470:153118. doi: 10.1016/j.tox.2022.153118. Epub 2022 Feb 3.
41 Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia. 2011 May;25(5):838-47. doi: 10.1038/leu.2011.2. Epub 2011 Feb 4.
42 Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007 Oct 1;67(19):9443-54. doi: 10.1158/0008-5472.CAN-07-1473.
43 Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem. 2007 Oct 5;282(40):29230-40. doi: 10.1074/jbc.M703461200. Epub 2007 Jul 30.
44 Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010 Nov;124(1):79-88. doi: 10.1007/s10549-009-0714-5. Epub 2010 Jan 7.
45 Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80. doi: 10.1124/jpet.106.108621. Epub 2006 Sep 7.
46 Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs. 2011 Jan;22(1):79-88. doi: 10.1097/CAD.0b013e32833f44fd.
47 Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology. 2007;85(1):45-53. doi: 10.1159/000100508. Epub 2007 Mar 5.
48 Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther. 2011 Jun;10(6):1028-35. doi: 10.1158/1535-7163.MCT-10-1044. Epub 2011 Apr 11.
49 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
50 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
51 Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther. 2008 Nov;7(11):3519-26. doi: 10.1158/1535-7163.MCT-08-0138.
52 Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling pathways. Chem Biol Interact. 2023 Jan 25;370:110329. doi: 10.1016/j.cbi.2022.110329. Epub 2022 Dec 22.
53 Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem. 2011 Jul;46(7):2845-51. doi: 10.1016/j.ejmech.2011.04.007. Epub 2011 Apr 14.
54 The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol. 2007 Sep;72(3):788-95. doi: 10.1124/mol.106.033308. Epub 2007 Jun 26.
55 Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol. 2015 Apr;36(4):2323-34. doi: 10.1007/s13277-014-2839-3. Epub 2014 Nov 22.
56 Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer. 2009 Oct 31;9:387. doi: 10.1186/1471-2407-9-387.
57 The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms. Eur J Cancer. 2010 Mar;46(4):836-50. doi: 10.1016/j.ejca.2009.12.025. Epub 2010 Jan 12.
58 Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015 Feb;143(2):374-84. doi: 10.1093/toxsci/kfu235. Epub 2014 Nov 3.
59 Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 2009 Oct;8(20):1904-13. doi: 10.4161/cbt.8.20.9436. Epub 2009 Oct 6.
60 Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 2019 Sep 15;379:114665. doi: 10.1016/j.taap.2019.114665. Epub 2019 Jul 16.
61 Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett. 2013 Feb 1;329(1):45-58. doi: 10.1016/j.canlet.2012.09.020. Epub 2012 Oct 2.
62 The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005 Oct 20;24(46):6861-9. doi: 10.1038/sj.onc.1208841.
63 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.
64 The multikinase inhibitor sorafenib induces caspase-dependent apoptosis in PC-3 prostate cancer cells. Asian J Androl. 2010 Jul;12(4):527-34. doi: 10.1038/aja.2010.21. Epub 2010 May 17.
65 Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005 Oct 28;3:39. doi: 10.1186/1479-5876-3-39.
66 GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.
67 Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006 Sep;5(9):2378-87. doi: 10.1158/1535-7163.MCT-06-0235.
68 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
69 Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008 Oct;7(10):1648-62. doi: 10.4161/cbt.7.10.6623. Epub 2008 Oct 12.
70 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
71 TRIM62 silencing represses the proliferation and invasion and increases the chemosensitivity of hepatocellular carcinoma cells by affecting the NF-B pathway. Toxicol Appl Pharmacol. 2022 Jun 15;445:116035. doi: 10.1016/j.taap.2022.116035. Epub 2022 Apr 23.
72 Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol. 2020 Aug;142:111475. doi: 10.1016/j.fct.2020.111475. Epub 2020 Jun 6.
73 Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol. 2020 Sep 1;402:115117. doi: 10.1016/j.taap.2020.115117. Epub 2020 Jul 4.
74 Mechanism of tissue-selective drug action in the cardiovascular system. Mol Interv. 2005 Apr;5(2):84-93.
75 Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620.
76 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
77 Improved expression and purification of human multidrug resistance protein MDR1 from baculovirus-infected insect cells. Protein Expr Purif. 2009 Jul;66(1):7-14.
78 Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006 Mar 8;234(1):4-33.
79 MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem. 2000 Aug 4;275(31):23530-9.
80 Genetic variations of the SLC22A5 gene in the Chinese and Indian populations of Singapore. Drug Metab Pharmacokinet. 2010;25(1):112-9.
81 Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768-73.
82 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
83 Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1993 Sep;348(3):332-7.
84 Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos. 2005 May;33(5):664-71.
85 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
86 Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos. 2004 Feb;32(2):259-66.
87 Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003 Sep;13(9):565-75.
88 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
89 Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec;353(1):116-21.
90 Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions?. Biochem Pharmacol. 2004 Aug 15;68(4):783-90. doi: 10.1016/j.bcp.2004.05.006.
91 Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev Technol. 2004 Oct;2(5):497-506. doi: 10.1089/adt.2004.2.497.
92 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
93 Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro. 2017 Oct;44:27-35.
94 Low doses of BPF-induced hypertrophy in cardiomyocytes derived from human embryonic stem cells via disrupting the mitochondrial fission upon the interaction between ER and calcineurin A-DRP1 signaling pathway. Cell Biol Toxicol. 2022 Jun;38(3):409-426. doi: 10.1007/s10565-021-09615-y. Epub 2021 May 22.
95 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
96 Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos. 2005 Jan;33(1):31-7. doi: 10.1124/dmd.104.001560. Epub 2004 Oct 14.
97 Multidrug resistance protein-6 (MRP6) in human dermal fibroblasts. Comparison between cells from normal subjects and from Pseudoxanthoma elasticum patients. Matrix Biol. 2003 Nov;22(6):491-500. doi: 10.1016/j.matbio.2003.09.001.
98 Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays. Physiol Genomics. 2002 Oct 29;11(2):45-52. doi: 10.1152/physiolgenomics.00064.2002.
99 Selection of drugs to test the specificity of the Tg.AC assay by screening for induction of the gadd153 promoter in vitro. Toxicol Sci. 2003 Aug;74(2):260-70. doi: 10.1093/toxsci/kfg113. Epub 2003 May 2.
100 Plasma atrial natriuretic peptide levels in essential hypertension after treatment with verapamil. Eur J Drug Metab Pharmacokinet. 2002 Jan-Mar;27(1):45-8. doi: 10.1007/BF03190404.
101 Verapamil-induced hyperprolactinemia complicated by a pituitary incidentaloma. Ann Pharmacother. 1995 Oct;29(10):999-1001. doi: 10.1177/106002809502901009.
102 [Unstable stenocardia: indicators of platelet activity and the effect of verapamil]. Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR. 1987;10(2):33-9.
103 Protective role of HO-1 for alcohol-dependent liver damage. Dig Dis. 2010;28(6):792-8. doi: 10.1159/000324287. Epub 2011 Apr 27.
104 Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol In Vitro. 2018 Oct;52:306-313. doi: 10.1016/j.tiv.2018.07.001. Epub 2018 Jul 9.
105 8-Methoxypsoralen disrupts MDR3-mediated phospholipids efflux and bile acid homeostasis and its relevance to hepatotoxicity. Toxicology. 2017 Jul 1;386:40-48. doi: 10.1016/j.tox.2017.05.011. Epub 2017 May 24.
106 Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol Appl Pharmacol. 2011 May 1;252(3):250-8. doi: 10.1016/j.taap.2011.02.016. Epub 2011 Feb 26.
107 Effects of quinidine and verapamil on human cardiovascular alpha1-adrenoceptors. Circulation. 1998 Apr 7;97(13):1227-30. doi: 10.1161/01.cir.97.13.1227.
108 Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol. 2015 May 18;28(5):927-34. doi: 10.1021/tx5005248. Epub 2015 Apr 3.
109 Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects. Mol Pharmacol. 2004 Apr;65(4):897-905. doi: 10.1124/mol.65.4.897.
110 Neonicotinoid pesticides poorly interact with human drug transporters. J Biochem Mol Toxicol. 2019 Oct;33(10):e22379. doi: 10.1002/jbt.22379. Epub 2019 Jul 31.
111 hKv4.3 channel characterization and regulation by calcium channel antagonists. Biochem Biophys Res Commun. 2001 Feb 23;281(2):452-60. doi: 10.1006/bbrc.2001.4396.
112 CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009 Aug;2(4):362-70. doi: 10.1161/CIRCGENETICS.109.857839. Epub 2009 Jun 3.
113 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
114 KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST). Pharmacogenet Genomics. 2007 Sep;17(9):719-29. doi: 10.1097/FPC.0b013e32810f2e3c.
115 A common 1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. J Am Coll Cardiol. 2012 Jan 3;59(1):49-56. doi: 10.1016/j.jacc.2011.08.061.