General Information of Drug Combination (ID: DCOIIFN)

Drug Combination Name
Capsaicin Lidocaine
Indication
Disease Entry Status REF
Or Peripheral Nerve Injury (PNI) Phase 1 [1]
Component Drugs Capsaicin   DMGMF6V Lidocaine   DML4ZOT
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Capsaicin
Disease Entry ICD 11 Status REF
Back pain ME84.Z Approved [2]
Neuropathic pain 8E43.0 Approved [3]
Pain MG30-MG3Z Approved [2]
Peripheral neuropathy 8C0Z Approved [2]
Polyneuropathy N.A. Approved [2]
Postherpetic neuralgia 1E91.5 Approved [2]
Type-1/2 diabetes 5A10-5A11 Approved [2]
Diabetic neuropathy 8C0Z Investigative [2]
Neuralgia N.A. Investigative [2]
Capsaicin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Transient receptor potential cation channel V1 (TRPV1) TTMI6F5 TRPV1_HUMAN Agonist [13]
------------------------------------------------------------------------------------
Capsaicin Interacts with 9 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [14]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [14]
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [14]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [14]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [14]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [14]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [14]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [14]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 DME(s)
Capsaicin Interacts with 195 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [15]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [16]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Decreases Activity [16]
Cytochrome P450 2C19 (CYP2C19) OTFMJYYE CP2CJ_HUMAN Decreases Activity [16]
Cytochrome P450 1A2 (CYP1A2) OTLLBX48 CP1A2_HUMAN Decreases Activity [16]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [17]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Increases Phosphorylation [17]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Localization [17]
NPC intracellular cholesterol transporter 1 (NPC1) OTRIPICX NPC1_HUMAN Increases Expression [18]
Delta(14)-sterol reductase TM7SF2 (TM7SF2) OTILU5S7 ERG24_HUMAN Decreases Expression [18]
Fatty acid CoA ligase Acsl3 (ACSL3) OT3MWER1 ACSL3_HUMAN Decreases Expression [18]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Expression [18]
Apolipoprotein C-I (APOC1) OTA58CED APOC1_HUMAN Decreases Expression [18]
Fatty acid-binding protein, adipocyte (FABP4) OT3DKFOU FABP4_HUMAN Decreases Expression [18]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [18]
Sterol carrier protein 2 (SCP2) OTPAFCPQ SCP2_HUMAN Decreases Expression [18]
Interleukin-12 subunit beta (IL12B) OT0JF8A3 IL12B_HUMAN Decreases Expression [18]
Cyclin-dependent kinase inhibitor 2A (CDKN2A) OTN0ZWAE CDN2A_HUMAN Increases Expression [18]
Hepatocyte nuclear factor 3-alpha (FOXA1) OTEBY0TD FOXA1_HUMAN Decreases Expression [18]
Fatty acid-binding protein 5 (FABP5) OTNM186C FABP5_HUMAN Decreases Expression [18]
Peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) OTM0A0DY ACOX1_HUMAN Increases Expression [18]
Methylsterol monooxygenase 1 (MSMO1) OTKV62RZ MSMO1_HUMAN Increases Expression [18]
Eukaryotic translation initiation factor 2A (EIF2A) OTWXELQP EIF2A_HUMAN Increases Phosphorylation [18]
Phosphatidylcholine transfer protein (PCTP) OTM36JXE PPCT_HUMAN Decreases Expression [18]
Nitric oxide synthase 3 (NOS3) OTLDT7NR NOS3_HUMAN Increases Expression [19]
Nitric oxide synthase 1 (NOS1) OT7M8XVG NOS1_HUMAN Increases Expression [19]
Nitric oxide synthase, inducible (NOS2) OTKKIOJ1 NOS2_HUMAN Increases Expression [19]
Phosphoglucomutase-1 (PGM1) OT3VM4JX PGM1_HUMAN Increases Expression [20]
Triosephosphate isomerase (TPI1) OT14KP4B TPIS_HUMAN Increases Expression [20]
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [21]
DNA fragmentation factor subunit alpha (DFFA) OTFPFMT8 DFFA_HUMAN Decreases Expression [22]
Apoptotic protease-activating factor 1 (APAF1) OTJWIVY0 APAF_HUMAN Increases Expression [21]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [21]
Angiopoietin-2 (ANGPT2) OTEQK65P ANGP2_HUMAN Increases Expression [23]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [24]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Increases Expression [21]
Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) OT0KMIYQ RIPK2_HUMAN Increases Expression [21]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L) OTJKOMXE BNI3L_HUMAN Decreases Expression [21]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [7]
Serine/threonine-protein kinase/endoribonuclease IRE1 (ERN1) OTY9R6FZ ERN1_HUMAN Increases Expression [25]
Transient receptor potential cation channel subfamily A member 1 (TRPA1) OTRDIR5M TRPA1_HUMAN Increases Activity [26]
BAG family molecular chaperone regulator 3 (BAG3) OTVXYUDQ BAG3_HUMAN Increases Expression [21]
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Affects Localization [27]
B-cell lymphoma/leukemia 10 (BCL10) OT47MCLI BCL10_HUMAN Increases Expression [21]
Serine/threonine-protein kinase Chk2 (CHEK2) OT8ZPCNS CHK2_HUMAN Increases Expression [21]
Glutamate dehydrogenase 1, mitochondrial (GLUD1) OTXKOCUH DHE3_HUMAN Increases Expression [28]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Increases Expression [21]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [29]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Increases Expression [23]
Metalloproteinase inhibitor 1 (TIMP1) OTOXC51H TIMP1_HUMAN Increases Expression [23]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Decreases Expression [21]
Myc proto-oncogene protein (MYC) OTPV5LUK MYC_HUMAN Increases Expression [21]
GTPase HRas (HRAS) OTWQN0DP RASH_HUMAN Increases Expression [30]
Calcitonin (CALCA) OTZ11LHB CALC_HUMAN Increases Expression [31]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Expression [32]
Albumin (ALB) OTVMM513 ALBU_HUMAN Increases Expression [28]
Lactotransferrin (LTF) OT8JWCZ0 TRFL_HUMAN Increases Expression [33]
Interstitial collagenase (MMP1) OTI4I2V1 MMP1_HUMAN Increases Expression [23]
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) OTBPMIMW G3P_HUMAN Increases Expression [28]
Receptor tyrosine-protein kinase erbB-2 (ERBB2) OTOAUNCK ERBB2_HUMAN Decreases Expression [29]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [21]
Insulin-like growth factor I (IGF1) OTIIZR61 IGF1_HUMAN Increases Expression [23]
Plasminogen activator inhibitor 1 (SERPINE1) OTT0MPQ3 PAI1_HUMAN Decreases Expression [23]
Eukaryotic translation initiation factor 2 subunit 1 (EIF2S1) OTM0GDTP IF2A_HUMAN Increases Phosphorylation [25]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Expression [34]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Decreases Expression [21]
Transcription factor Sp1 (SP1) OTISPT4X SP1_HUMAN Increases Localization [35]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Increases Expression [23]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [36]
Galectin-1 (LGALS1) OT8LDFWR LEG1_HUMAN Increases Expression [28]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Adp-Ribosylation [37]
Calcitonin gene-related peptide 2 (CALCB) OTNVY7WY CALCB_HUMAN Increases Expression [31]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [34]
Androgen receptor (AR) OTUBKAZZ ANDR_HUMAN Increases Expression [38]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [21]
Microtubule-associated protein tau (MAPT) OTMTP2Z7 TAU_HUMAN Increases Expression [7]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [25]
Microtubule-associated protein 2 (MAP2) OT6UYT3X MTAP2_HUMAN Increases Expression [39]
Granzyme A (GZMA) OT43R33L GRAA_HUMAN Increases Expression [23]
Myosin light chain 4 (MYL4) OTURFCSE MYL4_HUMAN Decreases Expression [10]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Increases Expression [7]
Glial fibrillary acidic protein (GFAP) OTQ01ZAS GFAP_HUMAN Increases Expression [39]
Endoplasmin (HSP90B1) OT02XLBR ENPL_HUMAN Increases Expression [28]
G2/mitotic-specific cyclin-B1 (CCNB1) OT19S7E5 CCNB1_HUMAN Decreases Expression [40]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Increases Expression [23]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [10]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Localization [37]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Increases Expression [32]
Cadherin-2 (CDH2) OTH0Y56P CADH2_HUMAN Decreases Expression [7]
Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) OT2D9DOV TNR1A_HUMAN Increases Expression [23]
Retinoic acid receptor RXR-alpha (RXRA) OTP1TBDM RXRA_HUMAN Decreases Expression [41]
Nuclear factor NF-kappa-B p105 subunit (NFKB1) OTNRRD8I NFKB1_HUMAN Affects Expression [21]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [40]
Protachykinin-1 (TAC1) OTM842YW TKN1_HUMAN Decreases Expression [42]
Cytochrome c oxidase subunit 5A, mitochondrial (COX5A) OTP0961M COX5A_HUMAN Increases Expression [28]
Nucleoside diphosphate kinase B (NME2) OTCYGLHV NDKB_HUMAN Increases Expression [23]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Increases Phosphorylation [7]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [24]
Growth arrest and DNA damage-inducible protein GADD45 alpha (GADD45A) OTDRV63V GA45A_HUMAN Increases Expression [21]
Tenascin (TNC) OTK4FSHR TENA_HUMAN Decreases Expression [10]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [43]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [21]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Decreases Degradation [44]
Protein S100-A4 (S100A4) OTLRGFSQ S10A4_HUMAN Increases Expression [23]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [45]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [45]
Retinoic acid receptor RXR-beta (RXRB) OTNPDXG2 RXRB_HUMAN Decreases Expression [41]
Peroxiredoxin-6 (PRDX6) OTS8KC8A PRDX6_HUMAN Increases Expression [28]
Metalloproteinase inhibitor 3 (TIMP3) OTDGQAD1 TIMP3_HUMAN Increases Expression [23]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [46]
Sterol regulatory element-binding protein 1 (SREBF1) OTWBRPAI SRBP1_HUMAN Increases Expression [7]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Decreases Expression [41]
Squalene synthase (FDFT1) OTGDISIT FDFT_HUMAN Increases Expression [10]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [21]
Collagen alpha-1(XVIII) chain (COL18A1) OTJFUH6O COIA1_HUMAN Increases Expression [23]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Affects Localization [24]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [37]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [47]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Increases Activity [45]
Mitogen-activated protein kinase 9 (MAPK9) OTCEVJ9E MK09_HUMAN Increases Activity [48]
5-hydroxytryptamine receptor 3A (HTR3A) OTAIV1AK 5HT3A_HUMAN Decreases Activity [49]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Decreases Expression [37]
Cytosolic phospholipase A2 (PLA2G4A) OTE70SOT PA24A_HUMAN Increases Phosphorylation [50]
Caspase-4 (CASP4) OTVQTV1L CASP4_HUMAN Increases Activity [51]
Carnitine O-palmitoyltransferase 1, liver isoform (CPT1A) OTI862QH CPT1A_HUMAN Increases Expression [52]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Expression [35]
Death-associated protein 1 (DAP) OT5YLL7E DAP1_HUMAN Increases Expression [7]
Ribosomal protein S6 kinase alpha-3 (RPS6KA3) OTYJNNMD KS6A3_HUMAN Increases Expression [28]
Serine/threonine-protein kinase Nek2 (NEK2) OT1H27HO NEK2_HUMAN Increases Expression [10]
5'-AMP-activated protein kinase catalytic subunit alpha-2 (PRKAA2) OTU1KZPV AAPK2_HUMAN Increases Phosphorylation [7]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [25]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Expression [21]
BH3-interacting domain death agonist (BID) OTOSHSHU BID_HUMAN Increases Expression [21]
Sestrin-3 (SESN3) OTJRY1Y5 SESN3_HUMAN Increases Expression [7]
Casein kinase II subunit beta (CSNK2B) OT2WW7R1 CSK2B_HUMAN Increases Phosphorylation [53]
Casein kinase II subunit alpha (CSNK2A1) OT9T8WQM CSK21_HUMAN Increases Phosphorylation [53]
DNA-dependent protein kinase catalytic subunit (PRKDC) OTJVS4EG PRKDC_HUMAN Increases Phosphorylation [37]
Mucin-5AC (MUC5AC) OTJV8O04 MUC5A_HUMAN Increases Secretion [54]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [21]
Transcription factor E2F1 (E2F1) OTLKYBBC E2F1_HUMAN Increases Expression [21]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Increases Expression [21]
Angiopoietin-1 receptor (TEK) OT78YN57 TIE2_HUMAN Increases Expression [23]
Peroxisome proliferator-activated receptor delta (PPARD) OTI4WTOP PPARD_HUMAN Decreases Expression [41]
Urokinase plasminogen activator surface receptor (PLAUR) OTIRKKEQ UPAR_HUMAN Increases Expression [23]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Decreases Localization [44]
Protein kinase C delta type (PRKCD) OTSEH90E KPCD_HUMAN Increases Expression [55]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [56]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Increases Expression [21]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Increases Expression [21]
Peroxisome proliferator-activated receptor alpha (PPARA) OTK095PP PPARA_HUMAN Decreases Expression [41]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 2 (BNIP2) OTVZD4H6 BNIP2_HUMAN Increases Expression [21]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Decreases Expression [21]
TNF receptor-associated factor 3 (TRAF3) OT5TQBGV TRAF3_HUMAN Increases Expression [21]
5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1) OT7TNF0L AAPK1_HUMAN Increases Phosphorylation [7]
Serine-protein kinase ATM (ATM) OTQVOHLT ATM_HUMAN Increases Expression [21]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Increases Expression [21]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Expression [21]
Angiopoietin-1 (ANGPT1) OTVZ1NG3 ANGP1_HUMAN Increases Expression [23]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Increases Expression [21]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [8]
Small ubiquitin-related modifier 4 (SUMO4) OT9B447E SUMO4_HUMAN Increases Expression [28]
Transient receptor potential cation channel subfamily M member 8 (TRPM8) OT7ACGYK TRPM8_HUMAN Increases Activity [26]
Tumor protein p53-inducible nuclear protein 2 (TP53INP2) OT0GTBXO T53I2_HUMAN Increases Expression [7]
Probable E3 ubiquitin-protein ligase TRIML1 (TRIML1) OTKKSF1S TRIML_HUMAN Increases Expression [7]
Arrestin domain-containing protein 4 (ARRDC4) OTINJ0FX ARRD4_HUMAN Decreases Expression [10]
Transient receptor potential cation channel subfamily V member 1 (TRPV1) OTHHDR03 TRPV1_HUMAN Decreases Expression [42]
Folliculin (FLCN) OTVM78XM FLCN_HUMAN Increases Expression [7]
Mitogen-activated protein kinase 15 (MAPK15) OT8SW0L7 MK15_HUMAN Increases Expression [7]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [21]
Tumor necrosis factor receptor superfamily member 25 (TNFRSF25) OTVZ7I3A TNR25_HUMAN Increases Expression [21]
Optineurin (OPTN) OT2UXWH9 OPTN_HUMAN Increases Expression [7]
Ras-related protein Rab-39B (RAB39B) OTDCLLT0 RB39B_HUMAN Increases Expression [7]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Affects Expression [57]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [7]
Growth/differentiation factor 15 (GDF15) OTWQN50N GDF15_HUMAN Increases Expression [58]
TNF receptor-associated factor 4 (TRAF4) OTJLRVMC TRAF4_HUMAN Increases Expression [21]
Serine/threonine-protein kinase PINK1, mitochondrial (PINK1) OT50NR57 PINK1_HUMAN Increases Expression [7]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [37]
Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) OTPMGIU4 MLP3A_HUMAN Affects Localization [7]
Ras-related GTP-binding protein C (RRAGC) OTV3XCV8 RRAGC_HUMAN Increases Expression [7]
Mucin-5B (MUC5B) OTPW6K5C MUC5B_HUMAN Increases Secretion [59]
NADPH oxidase 4 (NOX4) OTTYQ097 NOX4_HUMAN Affects Expression [57]
Ras-related GTP-binding protein D (RRAGD) OTXLVWAH RRAGD_HUMAN Increases Expression [7]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [7]
Bcl-2-associated transcription factor 1 (BCLAF1) OT7T8H6A BCLF1_HUMAN Increases Expression [21]
F-box/LRR-repeat protein 2 (FBXL2) OT5EZ7PD FBXL2_HUMAN Increases Expression [7]
Tyrosine-protein phosphatase non-receptor type 22 (PTPN22) OTDCNTC3 PTN22_HUMAN Increases Expression [7]
Sestrin-1 (SESN1) OTSFDZWL SESN1_HUMAN Increases Expression [7]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Response To Substance [60]
NADH-ubiquinone oxidoreductase chain 1 (ND1) OTCLGIXV NU1M_HUMAN Increases Response To Substance [61]
Ecto-NOX disulfide-thiol exchanger 2 (ENOX2) OTMDA97Z ENOX2_HUMAN Increases Response To Substance [62]
GTP cyclohydrolase 1 (GCH1) OTOZ6NSL GCH1_HUMAN Affects Response To Substance [63]
Substance-K receptor (TACR2) OTTQHQZM NK2R_HUMAN Increases Response To Substance [64]
Transient receptor potential cation channel subfamily V member 6 (TRPV6) OTZ0LGNO TRPV6_HUMAN Increases Response To Substance [56]
Endothelin-1 (EDN1) OTZCACEG EDN1_HUMAN Decreases Activity [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 195 DOT(s)
Indication(s) of Lidocaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [4]
Carpal tunnel syndrome N.A. Approved [5]
Interstitial cystitis GC00.3 Approved [5]
Long QT syndrome BC65.0 Approved [5]
Pain MG30-MG3Z Approved [5]
Pediculus capitis infestation 1G00.0 Approved [5]
Periodontitis DA0C Approved [5]
Postherpetic neuralgia 1E91.5 Approved [5]
Pthirus pubis infestation N.A. Approved [5]
Dysmenorrhea GA34.3 Phase 2 [6]
Chronic pain MG30 Investigative [5]
Neuralgia N.A. Investigative [5]
Premature ejaculation HA03.0Z Investigative [5]
Pruritus EC90 Investigative [5]
Lidocaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.9 (SCN11A) TTN9VTF SCNBA_HUMAN Blocker [67]
------------------------------------------------------------------------------------
Lidocaine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [68]
------------------------------------------------------------------------------------
Lidocaine Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [69]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [70]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [71]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [72]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [73]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [73]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [71]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [71]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [71]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [74]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Lidocaine Interacts with 23 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Ethylation [75]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [76]
Alpha-1-acid glycoprotein 1 (ORM1) OTZKSBRE A1AG1_HUMAN Affects Binding [77]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Increases ADR [78]
Glutathione hydrolase 1 proenzyme (GGT1) OTYDA1Z7 GGT1_HUMAN Increases ADR [78]
Alkaline phosphatase, placental type (ALPP) OTZU4G9W PPB1_HUMAN Increases ADR [78]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Increases Expression [79]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [80]
Kininogen-1 (KNG1) OT4X9LDE KNG1_HUMAN Decreases Activity [81]
Beta-nerve growth factor (NGF) OTOLABJT NGF_HUMAN Decreases Expression [66]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [82]
Neurofilament medium polypeptide (NEFM) OT8VCBNF NFM_HUMAN Decreases Expression [66]
Alpha-1-acid glycoprotein 2 (ORM2) OTRJGZP8 A1AG2_HUMAN Affects Binding [77]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [83]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [83]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [84]
Neuronatin (NNAT) OTNRLO7G NNAT_HUMAN Decreases Expression [66]
Transient receptor potential cation channel subfamily V member 1 (TRPV1) OTHHDR03 TRPV1_HUMAN Increases Activity [85]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [86]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [87]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases ADR [78]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Affects Response To Substance [88]
Sulfotransferase 1B1 (SULT1B1) OTH0RQYA ST1B1_HUMAN Increases Sulfation [86]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Knee Osteoarthritis DCRQSPB N. A. Phase 1 [89]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT01416116) Method of Pre-treatment for Application of QUTENZA Capsaicin 8% Patch
2 Capsaicin FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2486).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2623).
5 Lidocaine FDA Label
6 ClinicalTrials.gov (NCT00651313) Efficacy and Safety Study of Lidocaine Vaginal Gel for Recurrent Dysmenorrhea (Painful Periods). U.S. National Institutes of Health.
7 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
8 Capsaicin regulates vascular endothelial cell growth factor expression by modulation of hypoxia inducing factor-1alpha in human malignant melanoma cells. J Cancer Res Clin Oncol. 2002 Sep;128(9):461-8. doi: 10.1007/s00432-002-0368-8. Epub 2002 Aug 21.
9 VCAM-1 expression on human dermal microvascular endothelial cells is directly and specifically up-regulated by substance P. J Immunol. 1999 Feb 1;162(3):1656-61.
10 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
11 Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr. 2009 Jan;89(1):45-50. doi: 10.3945/ajcn.2008.26561. Epub 2008 Dec 3.
12 Differential and special properties of the major human UGT1-encoded gastrointestinal UDP-glucuronosyltransferases enhance potential to control chemical uptake. J Biol Chem. 2004 Jan 9;279(2):1429-41.
13 Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol. 2007;(179):155-71.
14 Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Chem Res Toxicol. 2003 Mar;16(3):336-49.
15 Studies of the toxicological potential of capsinoids, XIII: inhibitory effects of capsaicin and capsinoids on cytochrome P450 3A4 in human liver microsomes. Int J Toxicol. 2010 Mar;29(2 Suppl):22S-6S.
16 Effects of capsaicin and dihydrocapsaicin on human and rat liver microsomal CYP450 enzyme activities in vitro and in vivo. J Asian Nat Prod Res. 2012;14(4):382-95.
17 Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid Redox Signal. 2007 Dec;9(12):2087-98.
18 Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun. 2008 Aug 8;372(4):785-91.
19 Apoptosis induced by capsaicin and resveratrol in colon carcinoma cells requires nitric oxide production and caspase activation. Anticancer Res. 2009 Oct;29(10):3733-40.
20 Capsaicin induced the upregulation of transcriptional and translational expression of glycolytic enzymes related to energy metabolism in human intestinal epithelial cells. J Agric Food Chem. 2009 Dec 9;57(23):11148-53.
21 Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis. 2009 Aug;30(8):1320-9. doi: 10.1093/carcin/bgp138. Epub 2009 Jun 5.
22 [Mechanisms of capsaicin-induced apoptosis of human melanoma A375-S2 cells]. Zhonghua Zhong Liu Za Zhi. 2005 Jul;27(7):401-3.
23 Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis. 2011 May;32(5):686-94. doi: 10.1093/carcin/bgr025. Epub 2011 Feb 10.
24 Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res. 2007 May 15;13(10):3024-32. doi: 10.1158/1078-0432.CCR-06-2575.
25 Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther. 2009 Apr;329(1):112-22. doi: 10.1124/jpet.108.144113. Epub 2009 Jan 12.
26 The anthelminthic drug praziquantel is a selective agonist of the sensory transient receptor potential melastatin type 8 channel. Toxicol Appl Pharmacol. 2017 Dec 1;336:55-65. doi: 10.1016/j.taap.2017.10.012. Epub 2017 Oct 18.
27 Capsaicin induces apoptosis in SCC-4 human tongue cancer cells through mitochondria-dependent and -independent pathways. Environ Toxicol. 2012 May;27(6):332-41. doi: 10.1002/tox.20646. Epub 2010 Oct 5.
28 A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics. 2008 Nov;8(22):4748-67. doi: 10.1002/pmic.200800094.
29 Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010 Jan 14;29(2):285-96. doi: 10.1038/onc.2009.335. Epub 2009 Oct 26.
30 Capsaicin can alter the expression of tumor forming-related genes which might be followed by induction of apoptosis of a Korean stomach cancer cell line, SNU-1. Cancer Lett. 1997 Dec 9;120(2):235-41. doi: 10.1016/s0304-3835(97)00321-2.
31 Transient receptor potential vanilloid 1-mediated expression and secretion of endothelial cell-derived calcitonin gene-related peptide. Regul Pept. 2008 Oct 9;150(1-3):66-72. doi: 10.1016/j.regpep.2008.05.007. Epub 2008 Jun 3.
32 The vanilloid capsaicin induces IL-6 secretion in prostate PC-3 cancer cells. Cytokine. 2011 Jun;54(3):330-7. doi: 10.1016/j.cyto.2011.03.010. Epub 2011 Apr 6.
33 Comparison of nasal mucosal responsiveness to neuronal stimulation in non-allergic and allergic rhinitis: effects of capsaicin nasal challenge. Clin Exp Allergy. 1998 Jan;28(1):92-100. doi: 10.1046/j.1365-2222.1998.00182.x.
34 Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. J Biochem Mol Toxicol. 2005;19(4):266-75. doi: 10.1002/jbt.20084.
35 Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: involvement of Ca(2+) influx. Toxicol Appl Pharmacol. 2012 Feb 15;259(1):87-95. doi: 10.1016/j.taap.2011.12.010. Epub 2011 Dec 19.
36 Effects of capsaicin on P-gp function and expression in Caco-2 cells. Biochem Pharmacol. 2006 Jun 14;71(12):1727-34. doi: 10.1016/j.bcp.2006.03.024. Epub 2006 Apr 18.
37 Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol. 2012 Mar 15;83(6):747-57. doi: 10.1016/j.bcp.2011.12.029. Epub 2011 Dec 29.
38 Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett. 2009 Jan 5;583(1):141-7. doi: 10.1016/j.febslet.2008.11.038. Epub 2008 Dec 6.
39 Capsaicin induces apoptosis and terminal differentiation in human glioma A172 cells. Life Sci. 2008 May 7;82(19-20):997-1003. doi: 10.1016/j.lfs.2008.02.020. Epub 2008 Mar 10.
40 Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis. 2010 Mar;31(3):367-75. doi: 10.1093/carcin/bgp298. Epub 2009 Nov 25.
41 Transient receptor potential vanilloid-1 signaling as a regulator of human sebocyte biology. J Invest Dermatol. 2009 Feb;129(2):329-39. doi: 10.1038/jid.2008.258. Epub 2008 Sep 4.
42 Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol. 2004 Mar;13(3):129-39. doi: 10.1111/j.0906-6705.2004.0178.x.
43 [Induction of cell cycle arrest in bladder cancer RT4 cells by capsaicin]. Zhonghua Yi Xue Za Zhi. 2010 May 11;90(18):1230-3.
44 Suppression of phorbol ester-induced NF-kappaB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharm Res. 2002 Aug;25(4):475-9. doi: 10.1007/BF02976605.
45 Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells. Int J Cancer. 2003 Feb 10;103(4):475-82. doi: 10.1002/ijc.10855.
46 Structure-activity relationship of capsaicin analogs and transient receptor potential vanilloid 1-mediated human lung epithelial cell toxicity. J Pharmacol Exp Ther. 2011 May;337(2):400-10. doi: 10.1124/jpet.110.178491. Epub 2011 Feb 22.
47 Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001 Apr 26;165(2):139-45. doi: 10.1016/s0304-3835(01)00426-8.
48 Induction of apoptosis by vanilloid compounds does not require de novo gene transcription and activator protein 1 activity. Cell Growth Differ. 1998 Mar;9(3):277-86.
49 Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances. Biochem Biophys Res Commun. 2015 Nov 27;467(4):1090-6. doi: 10.1016/j.bbrc.2015.09.074. Epub 2015 Oct 9.
50 Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010 Feb;298(2):G233-40. doi: 10.1152/ajpgi.00409.2009. Epub 2009 Dec 3.
51 Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol. 2010 Jul;78(1):114-25. doi: 10.1124/mol.110.063495. Epub 2010 Apr 6.
52 Capsaicin attenuates palmitate-induced expression of macrophage inflammatory protein 1 and interleukin 8 by increasing palmitate oxidation and reducing c-Jun activation in THP-1 (human acute monocytic leukemia cell) cells. Nutr Res. 2011 Jun;31(6):468-78. doi: 10.1016/j.nutres.2011.05.007. Epub 2011 Jun 17.
53 Capsaicin, a component of red peppers, stimulates protein kinase CKII activity. BMB Rep. 2010 May;43(5):325-9. doi: 10.5483/bmbrep.2010.43.5.325.
54 Transient receptor potential vanilloid 1 receptors mediate acid-induced mucin secretion via Ca2+ influx in human airway epithelial cells. J Biochem Mol Toxicol. 2012 May;26(5):179-86. doi: 10.1002/jbt.20413. Epub 2012 May 7.
55 NF-B feedback control of JNK1 activation modulates TRPV1-induced increases in IL-6 and IL-8 release by human corneal epithelial cells. Mol Vis. 2011;17:3137-46. Epub 2011 Dec 2.
56 TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells--Mechanisms behind a possible new "hot" cancer treatment. Biochim Biophys Acta. 2007 Apr;1773(4):565-76. doi: 10.1016/j.bbamcr.2007.01.001. Epub 2007 Jan 10.
57 Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J Biochem Mol Toxicol. 2022 Mar;36(3):e22974. doi: 10.1002/jbt.22974. Epub 2021 Dec 23.
58 NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis. 2010 Apr;31(4):719-28. doi: 10.1093/carcin/bgq016. Epub 2010 Jan 28.
59 TRPV1 and TRPA1 stimulation induces MUC5B secretion in the human nasal airway in vivo. Clin Physiol Funct Imaging. 2011 Nov;31(6):435-44. doi: 10.1111/j.1475-097X.2011.01039.x. Epub 2011 Jul 26.
60 Capsaicin consumption, Helicobacter pylori CagA status and IL1B-31C>T genotypes: a host and environment interaction in gastric cancer. Food Chem Toxicol. 2012 Jun;50(6):2118-22. doi: 10.1016/j.fct.2012.02.043. Epub 2012 Mar 4.
61 Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol. 2018 Oct;120:89-97. doi: 10.1016/j.fct.2018.07.014. Epub 2018 Jul 6.
62 tNOX is both necessary and sufficient as a cellular target for the anticancer actions of capsaicin and the green tea catechin (-)-epigallocatechin-3-gallate. Biofactors. 2004;20(4):235-49.
63 Polymorphisms in the GTP cyclohydrolase gene (GCH1) are associated with ratings of capsaicin pain. Pain. 2009 Jan;141(1-2):114-8. doi: 10.1016/j.pain.2008.10.023. Epub 2008 Dec 9.
64 Association of genetic variations in neurokinin-2 receptor with enhanced cough sensitivity to capsaicin in chronic cough. Thorax. 2006 Dec;61(12):1070-5. doi: 10.1136/thx.2005.054429. Epub 2006 Aug 7.
65 Endothelin-1 affects capsaicin-evoked release of neuropeptides from rat vas deferens. Eur J Pharmacol. 1999 Jan 8;364(2-3):183-91. doi: 10.1016/s0014-2999(98)00841-3.
66 Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J Toxicol Sci. 2021;46(7):329-339. doi: 10.2131/jts.46.329.
67 Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008 May-Jun;58(3):280-6.
68 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
69 Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native Han and Tibetan Chinese volunteers living at high altitude. Pharmacology. 2016;97(3-4):107-13.
70 Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.
71 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
72 Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.
73 Drug Interactions Flockhart Table
74 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
75 The effect of mild and moderate hepatic impairment on the pharmacokinetics of valdecoxib, a selective COX-2 inhibitor. Eur J Clin Pharmacol. 2005 Jun;61(4):247-56.
76 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
77 Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996 Oct;6(5):403-15. doi: 10.1097/00008571-199610000-00004.
78 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
79 Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology. 2013 Jan;101(1):43-51.
80 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
81 Effects of capsaicin, bradykinin and prostaglandin E2 in the human skin. Br J Dermatol. 1992 Feb;126(2):111-7. doi: 10.1111/j.1365-2133.1992.tb07806.x.
82 [Influence of lidocaine on systemic inflammation in perioperative patients undergoing cardiopulmonary bypass]. Beijing Da Xue Xue Bao Yi Xue Ban. 2005 Dec 18;37(6):622-4.
83 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
84 Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol Sci. 2013 Dec;136(2):581-94. doi: 10.1093/toxsci/kft205. Epub 2013 Sep 19.
85 The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008 Feb;118(2):763-76. doi: 10.1172/JCI32751.
86 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
87 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.
88 Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Circ Res. 2008 Aug 15;103(4):396-404. doi: 10.1161/CIRCRESAHA.108.172619. Epub 2008 Jul 3.
89 ClinicalTrials.gov (NCT03576508) A Study to Compare Levels of Capsaicin After Intra-Articular Injection and Topical Application in Patients With Painful Knee Osteoarthritis