General Information of Drug Combination (ID: DCURLEA)

Drug Combination Name
Cyclophosphamide Sorafenib
Indication
Disease Entry Status REF
Adenocarcinoma Investigative [1]
Component Drugs Cyclophosphamide   DM4O2Z7 Sorafenib   DMS8IFC
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: OVCAR3
Zero Interaction Potency (ZIP) Score: 25.35
Bliss Independence Score: 17.28
Loewe Additivity Score: 12.7
LHighest Single Agent (HSA) Score: 7.82

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Cyclophosphamide
Disease Entry ICD 11 Status REF
Advanced cancer 2A00-2F9Z Approved [2]
Central nervous system neoplasm N.A. Approved [2]
Glioblastoma 2A00 Approved [2]
Immunodeficiency 4A00-4A85 Approved [2]
Inflammatory breast cancer 2C62 Approved [2]
Lupus nephritis 4A40.0Y Approved [2]
Lymphoma 2A80-2A86 Approved [2]
Multiple sclerosis 8A40 Approved [2]
Mycosis fungoides 2B01 Approved [2]
Plasma cell myeloma 2A83.1 Approved [2]
Solid tumour/cancer 2A00-2F9Z Approved [3]
Classic Hodgkin lymphoma N.A. Investigative [2]
Neuroblastoma 2D11.2 Investigative [2]
Retinoblastoma 2D02.2 Investigative [2]
Scleroderma 4A42 Investigative [2]
Cyclophosphamide Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Human Deoxyribonucleic acid (hDNA) TTUTN1I NOUNIPROTAC Modulator [12]
------------------------------------------------------------------------------------
Cyclophosphamide Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 4 (ABCC4) DTCSGPB MRP4_HUMAN Substrate [13]
------------------------------------------------------------------------------------
Cyclophosphamide Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [14]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [15]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [16]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [15]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [17]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [18]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [19]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Cyclophosphamide Interacts with 225 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Increases Activity [21]
Cytochrome P450 2C18 (CYP2C18) OTY687L9 CP2CI_HUMAN Increases Activity [21]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [22]
Cytochrome P450 2B6 (CYP2B6) OTOYO4S7 CP2B6_HUMAN Increases Hydroxylation [23]
Glucose-6-phosphate 1-dehydrogenase (G6PD) OT300SMK G6PD_HUMAN Increases ADR [6]
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases Metabolism [24]
Cholinesterase (BCHE) OTOH3WQ9 CHLE_HUMAN Decreases Activity [25]
Actin, cytoplasmic 1 (ACTB) OT1MCP2F ACTB_HUMAN Decreases Expression [26]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Expression [26]
Band 4.1-like protein 2 (EPB41L2) OT6UABPM E41L2_HUMAN Decreases Expression [27]
Receptor activity-modifying protein 1 (RAMP1) OT7UT2XB RAMP1_HUMAN Increases Expression [27]
Cystatin-F (CST7) OTQWZUVQ CYTF_HUMAN Decreases Expression [27]
Kelch repeat and BTB domain-containing protein 11 (KBTBD11) OTBOY3WH KBTBB_HUMAN Decreases Expression [27]
Aldehyde dehydrogenase 1A1 (ALDH1A1) OTCUWZKB AL1A1_HUMAN Increases Expression [27]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Decreases Expression [27]
Aldehyde dehydrogenase, mitochondrial (ALDH2) OTKJ9I3N ALDH2_HUMAN Increases Expression [27]
Tyrosine-protein kinase Fyn (FYN) OTLSLVZS FYN_HUMAN Increases Expression [27]
Procathepsin L (CTSL) OTYTUW29 CATL1_HUMAN Increases Expression [27]
Galectin-1 (LGALS1) OT8LDFWR LEG1_HUMAN Increases Expression [27]
SPARC (SPARC) OTPN90H0 SPRC_HUMAN Increases Expression [27]
Pro-cathepsin H (CTSH) OTLFL0DG CATH_HUMAN Increases Expression [27]
Non-secretory ribonuclease (RNASE2) OT8Z4FNE RNAS2_HUMAN Decreases Expression [27]
Transcriptional regulator ERG (ERG) OTOTX9VU ERG_HUMAN Increases Expression [27]
Tissue factor (F3) OT3MSU3B TF_HUMAN Decreases Expression [27]
Cytochrome c oxidase subunit 7A2, mitochondrial (COX7A2) OTVT146E CX7A2_HUMAN Decreases Expression [27]
Methylated-DNA--protein-cysteine methyltransferase (MGMT) OT40A9WH MGMT_HUMAN Decreases Expression [27]
Bactericidal permeability-increasing protein (BPI) OTNN9LJ5 BPI_HUMAN Decreases Expression [27]
Arachidonate 5-lipoxygenase-activating protein (ALOX5AP) OT0DH40W AL5AP_HUMAN Decreases Expression [27]
Interferon-induced GTP-binding protein Mx2 (MX2) OT05NF37 MX2_HUMAN Decreases Expression [27]
Amine oxidase A (MAOA) OT8NIWMQ AOFA_HUMAN Increases Expression [27]
Myeloblastin (PRTN3) OT72MHP7 PRTN3_HUMAN Decreases Expression [27]
Protein S100-P (S100P) OTJCXNJG S100P_HUMAN Decreases Expression [27]
Caspase-1 (CASP1) OTZ3YQFU CASP1_HUMAN Decreases Expression [27]
Myristoylated alanine-rich C-kinase substrate (MARCKS) OT7N056G MARCS_HUMAN Increases Expression [27]
Transmembrane 4 L6 family member 1 (TM4SF1) OTY0ECQN T4S1_HUMAN Increases Expression [27]
Intercellular adhesion molecule 3 (ICAM3) OTTZ5A5D ICAM3_HUMAN Decreases Expression [27]
P2Y purinoceptor 2 (P2RY2) OT47XN46 P2RY2_HUMAN Decreases Expression [27]
Glycine receptor subunit beta (GLRB) OTF37UG4 GLRB_HUMAN Increases Expression [27]
C-C chemokine receptor type 8 (CCR8) OTSCMH06 CCR8_HUMAN Decreases Expression [27]
Ras-related protein R-Ras2 (RRAS2) OT83NCEB RRAS2_HUMAN Increases Expression [27]
Bcl-2-interacting killer (BIK) OTTH1T3D BIK_HUMAN Decreases Expression [27]
Angiopoietin-1 (ANGPT1) OTVZ1NG3 ANGP1_HUMAN Increases Expression [27]
Fascin (FSCN1) OTTGIHTM FSCN1_HUMAN Increases Expression [27]
Pleckstrin homology-like domain family A member 2 (PHLDA2) OTMV9DPP PHLA2_HUMAN Increases Expression [27]
Testis-expressed protein 30 (TEX30) OT87WEPQ TEX30_HUMAN Decreases Expression [27]
Ras-related GTP-binding protein A (RRAGA) OTKISLG4 RRAGA_HUMAN Decreases Expression [27]
Cilium assembly protein DZIP1 (DZIP1) OTBVPO66 DZIP1_HUMAN Increases Expression [27]
RNA-binding protein with multiple splicing (RBPMS) OT1RDKR9 RBPMS_HUMAN Increases Expression [27]
Membrane-spanning 4-domains subfamily A member 3 (MS4A3) OT0CEJOO MS4A3_HUMAN Decreases Expression [27]
Rho GTPase-activating protein 7 (DLC1) OTP8LMCR RHG07_HUMAN Increases Expression [27]
MyoD family inhibitor domain-containing protein (MDFIC) OTSRYBWZ MDFIC_HUMAN Decreases Expression [27]
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 (GNG12) OTOGF42G GBG12_HUMAN Increases Expression [27]
Cyclic AMP-dependent transcription factor ATF-5 (ATF5) OT03QCLM ATF5_HUMAN Decreases Expression [27]
PALM2-AKAP2 fusion protein (PALM2AKAP2) OTI618VF PLAK2_HUMAN Increases Expression [27]
Dihydropyrimidinase-related protein 4 (DPYSL4) OT3SBS2S DPYL4_HUMAN Increases Expression [7]
Integral membrane protein GPR137B (GPR137B) OT1CINQQ G137B_HUMAN Increases Expression [7]
Glutaminase kidney isoform, mitochondrial (GLS) OTGOZG2M GLSK_HUMAN Increases Expression [7]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Increases Expression [7]
Ubiquitin-like protein ISG15 (ISG15) OT53QQ7N ISG15_HUMAN Increases Expression [7]
Early growth response protein 1 (EGR1) OTCP6XGZ EGR1_HUMAN Increases Expression [7]
Stomatin (STOM) OTC8R6EH STOM_HUMAN Increases Expression [7]
Cellular retinoic acid-binding protein 2 (CRABP2) OTY01V9G RABP2_HUMAN Increases Expression [7]
Tyrosine-protein kinase receptor UFO (AXL) OTKA2SUX UFO_HUMAN Increases Expression [7]
14-3-3 protein sigma (SFN) OTLJCZ1U 1433S_HUMAN Increases Expression [7]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [7]
Tumor necrosis factor ligand superfamily member 9 (TNFSF9) OTV9L89D TNFL9_HUMAN Increases Expression [7]
Galectin-7 (LGALS7) OTMSVI7R LEG7_HUMAN Increases Expression [7]
Rho GDP-dissociation inhibitor 2 (ARHGDIB) OT9PD6CS GDIR2_HUMAN Increases Expression [7]
Epithelial membrane protein 1 (EMP1) OTSZHUHQ EMP1_HUMAN Increases Expression [7]
Epithelial membrane protein 3 (EMP3) OTODMJ1D EMP3_HUMAN Increases Expression [7]
Protein ripply3 (RIPPLY3) OT1HK35I DSCR6_HUMAN Increases Expression [7]
Pro-neuregulin-1, membrane-bound isoform (NRG1) OTZO6F1X NRG1_HUMAN Increases Expression [7]
Antigen peptide transporter 1 (TAP1) OTJL27PW TAP1_HUMAN Increases Expression [7]
Laminin subunit gamma-2 (LAMC2) OTJMTM72 LAMC2_HUMAN Increases Expression [7]
Filamin-C (FLNC) OT3F8J6Y FLNC_HUMAN Increases Expression [7]
Immediate early response gene 5 protein (IER5) OTJPTXMD IER5_HUMAN Increases Expression [7]
Keratin, type II cytoskeletal 80 (KRT80) OTAU54U3 K2C80_HUMAN Increases Expression [7]
Neuropilin and tolloid-like protein 2 (NETO2) OT0YAMC0 NETO2_HUMAN Increases Expression [7]
UDP-GalNAc:beta-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2) OTOF6O2B B3GL2_HUMAN Increases Expression [7]
Phospholipase ABHD3 (ABHD3) OTH8P977 ABHD3_HUMAN Increases Expression [7]
Tumor necrosis factor receptor superfamily member 14 (TNFRSF14) OTB82PFO TNR14_HUMAN Increases Expression [7]
Major histocompatibility complex class I-related gene protein (MR1) OTZU3XX7 HMR1_HUMAN Increases Expression [7]
Tumor necrosis factor receptor superfamily member 27 (EDA2R) OTJLAIIH TNR27_HUMAN Increases Expression [7]
Stathmin-3 (STMN3) OT20F289 STMN3_HUMAN Increases Expression [7]
Solute carrier family 2, facilitated glucose transporter member 6 (SLC2A6) OTVUZCLG GTR6_HUMAN Increases Expression [7]
Endothelial protein C receptor (PROCR) OTRHED17 EPCR_HUMAN Increases Expression [7]
Serine/threonine-protein kinase Sgk1 (SGK1) OT301T1U SGK1_HUMAN Decreases Expression [8]
Interferon-related developmental regulator 1 (IFRD1) OT4SQMLQ IFRD1_HUMAN Decreases Expression [8]
Kinesin-like protein KIF21B (KIF21B) OTFXFIU3 KI21B_HUMAN Decreases Expression [8]
Large neutral amino acids transporter small subunit 3 (SLC43A1) OTQJQY3S LAT3_HUMAN Decreases Expression [8]
Cystatin-A (CSTA) OT1K68KE CYTA_HUMAN Decreases Expression [8]
Amino acid transporter heavy chain SLC3A2 (SLC3A2) OTBR33M9 4F2_HUMAN Decreases Expression [8]
Asparagine synthetase (ASNS) OT8R922G ASNS_HUMAN Decreases Expression [8]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [8]
Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2) OT1LQSGX MTDC_HUMAN Decreases Expression [8]
CCAAT/enhancer-binding protein beta (CEBPB) OTM9MQIA CEBPB_HUMAN Decreases Expression [8]
Protein EVI2A (EVI2A) OTR8RUXQ EVI2A_HUMAN Decreases Expression [8]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Decreases Expression [8]
DnaJ homolog subfamily B member 1 (DNAJB1) OTCOSEVH DNJB1_HUMAN Increases Expression [8]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Decreases Expression [8]
B-cell lymphoma 6 protein (BCL6) OTQAWWO1 BCL6_HUMAN Decreases Expression [8]
Radiation-inducible immediate-early gene IEX-1 (IER3) OTZJI5FZ IEX1_HUMAN Decreases Expression [8]
Cysteine--tRNA ligase, cytoplasmic (CARS1) OTOUZF6O SYCC_HUMAN Decreases Expression [8]
Sestrin-2 (SESN2) OT889IXY SESN2_HUMAN Decreases Expression [8]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [8]
DNA-binding protein inhibitor ID-2 (ID2) OT0U1D53 ID2_HUMAN Decreases Expression [8]
Early activation antigen CD69 (CD69) OTGJHSVP CD69_HUMAN Decreases Expression [8]
Transmembrane protein 267 (TMEM267) OTEAAVK7 TM267_HUMAN Decreases Expression [8]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [8]
Isopentenyl-diphosphate Delta-isomerase 1 (IDI1) OTGM06VJ IDI1_HUMAN Increases Expression [8]
N-arachidonyl glycine receptor (GPR18) OTL2VFIV GPR18_HUMAN Decreases Expression [8]
Nuclear receptor coactivator 7 (NCOA7) OT2CNBOG NCOA7_HUMAN Decreases Expression [8]
Alanine aminotransferase 2 (GPT2) OTS5VF7N ALAT2_HUMAN Decreases Expression [8]
Nanos homolog 1 (NANOS1) OT3UNZZY NANO1_HUMAN Increases Expression [8]
Heat shock protein 105 kDa (HSPH1) OTVRR73T HS105_HUMAN Increases Expression [8]
Insulin gene enhancer protein ISL-2 (ISL2) OT43PD2V ISL2_HUMAN Decreases Expression [8]
E3 ubiquitin-protein ligase pellino homolog 1 (PELI1) OTMLBCLC PELI1_HUMAN Decreases Expression [8]
Centriolar and ciliogenesis-associated protein HYLS1 (HYLS1) OT3SW5UC HYLS1_HUMAN Decreases Expression [8]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Decreases Expression [8]
Glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) OTJGE772 CHAC1_HUMAN Decreases Expression [8]
Transmembrane 6 superfamily member 1 (TM6SF1) OTQR4I2N TM6S1_HUMAN Decreases Expression [8]
Protein FAM107B (FAM107B) OT5RG4J0 F107B_HUMAN Decreases Expression [8]
Lysine-rich coiled-coil protein 1 (KRCC1) OTMMV6WZ KRCC1_HUMAN Decreases Expression [8]
DnaJ homolog subfamily B member 4 (DNAJB4) OTUD01BK DNJB4_HUMAN Increases Expression [8]
SLAM family member 5 (CD84) OTAY5B0F SLAF5_HUMAN Increases Expression [8]
Cystine/glutamate transporter (SLC7A11) OTKJ6PXW XCT_HUMAN Decreases Expression [8]
Nuclear factor erythroid 2-related factor 3 (NFE2L3) OT1MGXT0 NF2L3_HUMAN Decreases Expression [8]
Dual specificity protein phosphatase 10 (DUSP10) OTNG467B DUS10_HUMAN Decreases Expression [8]
Apoptotic protease-activating factor 1 (APAF1) OTJWIVY0 APAF_HUMAN Decreases Expression [9]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Increases Expression [28]
Growth arrest-specific protein 2 (GAS2) OT50JKXQ GAS2_HUMAN Increases Expression [29]
Lysine-specific histone demethylase 1A (KDM1A) OT85JXS5 KDM1A_HUMAN Increases Expression [30]
Slit homolog 1 protein (SLIT1) OT35RBNT SLIT1_HUMAN Decreases Expression [10]
DnaJ homolog subfamily B member 6 (DNAJB6) OTMHIIAN DNJB6_HUMAN Increases Expression [29]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [31]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Increases Expression [32]
Thymidine kinase, cytosolic (TK1) OTY5JFM1 KITH_HUMAN Increases Mutagenesis [33]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Mutagenesis [34]
Endothelin-1 (EDN1) OTZCACEG EDN1_HUMAN Increases Expression [35]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [31]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Decreases Expression [36]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [37]
Heat shock 70 kDa protein 1A (HSPA1A) OTKGIE76 HS71A_HUMAN Increases Expression [38]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [39]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [40]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [41]
Natriuretic peptides B (NPPB) OTSN2IPY ANFB_HUMAN Increases Expression [35]
Troponin I, cardiac muscle (TNNI3) OT65E12V TNNI3_HUMAN Increases Expression [35]
Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) OTVLI4DD TNAP3_HUMAN Increases Expression [42]
Growth arrest and DNA damage-inducible protein GADD45 alpha (GADD45A) OTDRV63V GA45A_HUMAN Increases Expression [9]
Endothelin receptor type B (EDNRB) OTLLZV3P EDNRB_HUMAN Increases Expression [10]
Insulin-like growth factor-binding protein 5 (IGFBP5) OTRE5V0C IBP5_HUMAN Decreases Expression [10]
DNA cytosine-5)-methyltransferase 1 (DNMT1) OTM2DGTK DNMT1_HUMAN Decreases Methylation [30]
Proteasome subunit alpha type-5 (PSMA5) OT38E6Y1 PSA5_HUMAN Increases Expression [29]
HLA class I histocompatibility antigen, alpha chain F (HLA-F) OT76CM19 HLAF_HUMAN Increases Expression [10]
Phospholipid hydroperoxide glutathione peroxidase GPX4 (GPX4) OTRAFFX2 GPX4_HUMAN Increases Expression [29]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [40]
Cytosolic purine 5'-nucleotidase (NT5C2) OTJMF66Z 5NTC_HUMAN Increases Expression [10]
Tumor protein D52 (TPD52) OTPKSK43 TPD52_HUMAN Decreases Expression [42]
Potassium voltage-gated channel subfamily KQT member 4 (KCNQ4) OT29B58J KCNQ4_HUMAN Decreases Expression [10]
Heterogeneous nuclear ribonucleoprotein K (HNRNPK) OTNPRM8U HNRPK_HUMAN Increases Expression [29]
Protein BTG2 (BTG2) OTZF6K1H BTG2_HUMAN Increases Expression [9]
Runt-related transcription factor 3 (RUNX3) OTITK1XD RUNX3_HUMAN Decreases Expression [10]
Calicin (CCIN) OTRFZOT0 CALI_HUMAN Increases Expression [29]
Programmed cell death protein 4 (PDCD4) OTZ6NXUX PDCD4_HUMAN Decreases Expression [42]
Ribonucleoside-diphosphate reductase subunit M2 B (RRM2B) OTE8GBUR RIR2B_HUMAN Increases Expression [43]
Partitioning defective 3 homolog (PARD3) OTH5BPLO PARD3_HUMAN Decreases Expression [10]
GATOR1 complex protein NPRL2 (NPRL2) OTOB10MO NPRL2_HUMAN Decreases Expression [10]
F-box/WD repeat-containing protein 7 (FBXW7) OTJXE4OT FBXW7_HUMAN Increases Expression [9]
Rho guanine nucleotide exchange factor 26 (ARHGEF26) OTX0U8PX ARHGQ_HUMAN Increases Expression [10]
G-protein coupled receptor 20 (GPR20) OTPCR8F7 GPR20_HUMAN Increases Expression [10]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [28]
Polyadenylate-binding protein-interacting protein 1 (PAIP1) OTL2F5T5 PAIP1_HUMAN Decreases Expression [10]
Large subunit GTPase 1 homolog (LSG1) OTDAXJ9L LSG1_HUMAN Decreases Expression [10]
Glyoxalase domain-containing protein 4 (GLOD4) OTBJKFXA GLOD4_HUMAN Decreases Expression [10]
DNA-directed DNA/RNA polymerase mu (POLM) OT0SRIP4 DPOLM_HUMAN Increases Expression [10]
Ubiquitin-like-conjugating enzyme ATG3 (ATG3) OT28VBVK ATG3_HUMAN Decreases Expression [10]
Regulator of telomere elongation helicase 1 (RTEL1) OTI3PJCT RTEL1_HUMAN Increases Expression [29]
FK506-binding protein-like (FKBPL) OTR9ND6K FKBPL_HUMAN Increases Expression [40]
Mitochondrial pyruvate carrier 2 (MPC2) OT0GHXGG MPC2_HUMAN Affects Response To Substance [11]
Krueppel-like factor 5 (KLF5) OT1ABI9N KLF5_HUMAN Affects Response To Substance [11]
Galactocerebrosidase (GALC) OT1F6BZK GALC_HUMAN Affects Response To Substance [11]
Granulocyte-macrophage colony-stimulating factor (CSF2) OT1M7D28 CSF2_HUMAN Affects Activity [44]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases ADR [6]
Krueppel-like factor 4 (KLF4) OT4O9RQW KLF4_HUMAN Decreases Response To Substance [45]
D-beta-hydroxybutyrate dehydrogenase, mitochondrial (BDH1) OT62RL5P BDH_HUMAN Affects Response To Substance [11]
Melanoma-associated antigen D1 (MAGED1) OT6EOLFC MAGD1_HUMAN Affects Response To Substance [11]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Affects Response To Substance [11]
Pro-adrenomedullin (ADM) OT7T0TA4 ADML_HUMAN Affects Response To Substance [11]
Peptidyl-prolyl cis-trans isomerase FKBP1B (FKBP1B) OT8CMPB2 FKB1B_HUMAN Affects Response To Substance [11]
L-lactate dehydrogenase B chain (LDHB) OT9B1CT3 LDHB_HUMAN Affects Response To Substance [11]
Epsilon-sarcoglycan (SGCE) OT9F17JB SGCE_HUMAN Affects Response To Substance [11]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Response To Substance [46]
Aldehyde dehydrogenase, dimeric NADP-preferring (ALDH3A1) OTAYZZE6 AL3A1_HUMAN Affects Response To Substance [47]
Sterol O-acyltransferase 1 (SOAT1) OTB4Y5RJ SOAT1_HUMAN Affects Response To Substance [11]
Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) OTB97VIK IF2B3_HUMAN Affects Response To Substance [11]
Cochlin (COCH) OTBEHD89 COCH_HUMAN Affects Response To Substance [11]
Fibronectin type III domain-containing protein 3B (FNDC3B) OTBILGDR FND3B_HUMAN Affects Response To Substance [11]
Tropomyosin alpha-1 chain (TPM1) OTD73X6R TPM1_HUMAN Affects Response To Substance [11]
Very long chain fatty acid elongase 2 (ELOVL2) OTDAF6U3 ELOV2_HUMAN Affects Response To Substance [11]
Glutathione peroxidase 1 (GPX1) OTE2O72Q GPX1_HUMAN Increases ADR [6]
Protein AF1q (MLLT11) OTG5RVHC AF1Q_HUMAN Decreases Response To Substance [48]
Troponin I, fast skeletal muscle (TNNI2) OTGGZFSC TNNI2_HUMAN Increases ADR [6]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Decreases Response To Substance [49]
Tomoregulin-1 (TMEFF1) OTH6M3CH TEFF1_HUMAN Affects Response To Substance [11]
DNA damage-inducible transcript 4 protein (DDIT4) OTHY8SY4 DDIT4_HUMAN Affects Response To Substance [11]
Ribosomal protein S6 kinase alpha-2 (RPS6KA2) OTIOYUSU KS6A2_HUMAN Affects Response To Substance [11]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Affects Response To Substance [50]
Insulin-like growth factor-binding protein 3 (IGFBP3) OTIX63TX IBP3_HUMAN Affects Response To Substance [11]
Osteopontin (SPP1) OTJGC23Y OSTP_HUMAN Affects Response To Substance [11]
Heat shock cognate 71 kDa protein (HSPA8) OTJI2RCI HSP7C_HUMAN Affects Response To Substance [11]
Nidogen-1 (NID1) OTKLBLS6 NID1_HUMAN Affects Response To Substance [11]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [6]
Homeobox protein Hox-A1 (HOXA1) OTMSOJ7D HXA1_HUMAN Affects Response To Substance [11]
Trypsin-3 (PRSS3) OTN3S5YB TRY3_HUMAN Affects Response To Substance [11]
Melanoma-associated antigen D4 (MAGED4B) OTO37U7W MAGD4_HUMAN Affects Response To Substance [11]
Opsin-3 (OPN3) OTON6BFU OPN3_HUMAN Affects Response To Substance [11]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Affects Response To Substance [51]
Complement factor I (CFI) OTQYYX0P CFAI_HUMAN Affects Response To Substance [11]
Heat shock-related 70 kDa protein 2 (HSPA2) OTSDET7B HSP72_HUMAN Affects Response To Substance [11]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Affects Response To Substance [52]
Max-interacting protein 1 (MXI1) OTUQ9E0D MXI1_HUMAN Affects Response To Substance [11]
Glycogen debranching enzyme (AGL) OTWBM7WY GDE_HUMAN Affects Response To Substance [11]
Myosin-10 (MYH10) OTXN2WXS MYH10_HUMAN Affects Response To Substance [11]
Sal-like protein 1 (SALL1) OTYYZGLH SALL1_HUMAN Affects Response To Substance [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 225 DOT(s)
Indication(s) of Sorafenib
Disease Entry ICD 11 Status REF
Adenocarcinoma 2D40 Approved [4]
Carcinoma 2A00-2F9Z Approved [4]
Clear cell renal carcinoma N.A. Approved [4]
Lung cancer 2C25.0 Approved [4]
Medullary thyroid gland carcinoma N.A. Approved [4]
Non-small-cell lung cancer 2C25.Y Approved [4]
Renal cell carcinoma 2C90 Approved [5]
Thyroid cancer 2D10 Approved [4]
Hepatocellular carcinoma 2C12.02 Phase 3 [5]
Myelodysplastic syndrome 2A37 Phase 2 [5]
Sorafenib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Modulator [58]
Platelet-derived growth factor receptor beta (PDGFRB) TTI7421 PGFRB_HUMAN Modulator [58]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [59]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Modulator [58]
------------------------------------------------------------------------------------
Sorafenib Interacts with 7 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [60]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [61]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [62]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [63]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [64]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [63]
RalBP1-associated Eps domain-containing protein 2 (RALBP1) DTYEM9B REPS2_HUMAN Substrate [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DTP(s)
Sorafenib Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [66]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [67]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [68]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [68]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [66]
UDP-glucuronosyltransferase 1A9 (UGT1A9) DE85D2P UD19_HUMAN Metabolism [69]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Sorafenib Interacts with 112 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [70]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Affects Response To Substance [71]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Phosphorylation [72]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [73]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [74]
DNA damage-inducible transcript 4 protein (DDIT4) OTHY8SY4 DDIT4_HUMAN Increases Expression [74]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [75]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [76]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [76]
Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) OTFBU4GD P3C2A_HUMAN Decreases Expression [53]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [53]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [53]
GTPase NRas (NRAS) OTVQ1DG3 RASN_HUMAN Decreases Expression [53]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Decreases Expression [53]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [53]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Decreases Expression [53]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [53]
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) OTTOMI8J PK3CA_HUMAN Decreases Expression [53]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [53]
Cyclin-dependent kinase 9 (CDK9) OT2B7OGB CDK9_HUMAN Decreases Expression [53]
Growth factor receptor-bound protein 2 (GRB2) OTOP7LTE GRB2_HUMAN Decreases Expression [53]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [53]
Interferon regulatory factor 5 (IRF5) OT8SIIAP IRF5_HUMAN Increases Expression [53]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [53]
Serine/threonine-protein kinase PLK3 (PLK3) OT19CT2Z PLK3_HUMAN Increases Expression [53]
Serine/threonine-protein kinase PLK2 (PLK2) OTKMJXJ8 PLK2_HUMAN Increases Expression [53]
Histone deacetylase 6 (HDAC6) OT9W9MXQ HDAC6_HUMAN Decreases Expression [53]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [74]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Decreases Expression [77]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Decreases Expression [78]
Zinc finger protein SNAI2 (SNAI2) OT7Y8EJ2 SNAI2_HUMAN Decreases Expression [54]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Ubiquitination [79]
Growth arrest and DNA damage-inducible protein GADD45 beta (GADD45B) OTL9I7LO GA45B_HUMAN Increases Expression [80]
Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) OTYG179K PR15A_HUMAN Increases Expression [55]
Growth arrest and DNA damage-inducible protein GADD45 gamma (GADD45G) OT8V1J4M GA45G_HUMAN Increases Expression [81]
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Affects Localization [78]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Activity [82]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Decreases Expression [83]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Activity [84]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [85]
RAF proto-oncogene serine/threonine-protein kinase (RAF1) OT51LSFO RAF1_HUMAN Decreases Activity [72]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Expression [86]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [80]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [87]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Expression [88]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Phosphorylation [78]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Activity [89]
High mobility group protein B1 (HMGB1) OT4B7CPF HMGB1_HUMAN Increases Expression [85]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [90]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [82]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [70]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [91]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Increases Expression [54]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Decreases Activity [92]
Serine/threonine-protein kinase B-raf (BRAF) OT7S81XQ BRAF_HUMAN Decreases Activity [93]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Phosphorylation [94]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [74]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [95]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [96]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [97]
G1/S-specific cyclin-D2 (CCND2) OTDULQF9 CCND2_HUMAN Decreases Expression [97]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [91]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [98]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Decreases Phosphorylation [72]
Dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) OTUE7Z91 MP2K2_HUMAN Decreases Phosphorylation [93]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [99]
Signal transducer and activator of transcription 5A (STAT5A) OTBSJGN3 STA5A_HUMAN Decreases Activity [100]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [101]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Decreases Phosphorylation [83]
Mitogen-activated protein kinase 9 (MAPK9) OTCEVJ9E MK09_HUMAN Decreases Phosphorylation [83]
Dual specificity mitogen-activated protein kinase kinase 4 (MAP2K4) OTZPZX11 MP2K4_HUMAN Decreases Phosphorylation [83]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [82]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [102]
CCAAT/enhancer-binding protein delta (CEBPD) OTNBIPMY CEBPD_HUMAN Increases Expression [81]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [101]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Response To Substance [103]
Stanniocalcin-1 (STC1) OTGVVXYF STC1_HUMAN Decreases Expression [104]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [105]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [87]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Expression [85]
Sestrin-2 (SESN2) OT889IXY SESN2_HUMAN Increases Expression [106]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [107]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [108]
Cyclin-dependent kinase 6 (CDK6) OTR95N0X CDK6_HUMAN Decreases Expression [91]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Phosphorylation [93]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Cleavage [78]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [78]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [109]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [110]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [95]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [111]
Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) OTXEE550 APR_HUMAN Decreases Expression [112]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [56]
Mitogen-activated protein kinase 14 (MAPK14) OT5TCO3O MK14_HUMAN Decreases Expression [113]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Decreases Expression [78]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [114]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [56]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [82]
Serine/threonine-protein kinase PINK1, mitochondrial (PINK1) OT50NR57 PINK1_HUMAN Increases Expression [79]
Eukaryotic translation initiation factor 2A (EIF2A) OTWXELQP EIF2A_HUMAN Increases Phosphorylation [55]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [115]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [116]
Ubiquitin carboxyl-terminal hydrolase CYLD (CYLD) OT37FKH0 CYLD_HUMAN Increases Expression [73]
Diablo IAP-binding mitochondrial protein (DIABLO) OTHJ9MCZ DBLOH_HUMAN Affects Localization [112]
Eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) OT0DZGY4 E2AK3_HUMAN Increases Phosphorylation [55]
E3 ubiquitin-protein ligase TRIM62 (TRIM62) OT15YO6N TRI62_HUMAN Affects Response To Substance [117]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Response To Substance [78]
ATP-binding cassette sub-family C member 3 (ABCC3) OTC3IJV4 MRP3_HUMAN Affects Response To Substance [71]
Hepatocyte growth factor (HGF) OTGHUA23 HGF_HUMAN Decreases Response To Substance [118]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Affects Response To Substance [71]
Receptor-type tyrosine-protein kinase FLT3 (FLT3) OTMSRYMK FLT3_HUMAN Increases Response To Substance [107]
Na(+)/citrate cotransporter (SLC13A5) OTPH1TA7 S13A5_HUMAN Decreases Response To Substance [119]
------------------------------------------------------------------------------------
⏷ Show the Full List of 112 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Non small cell carcinoma DCSZ9U7 SKMES1 Investigative [1]
Ovarian serous cystadenocarcinoma DCZ51HE SK-OV-3 Investigative [1]
Breast carcinoma DCWQE9R ZR751 Investigative [120]
------------------------------------------------------------------------------------

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Cyclophosphamide FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7154).
4 Sorafenib FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5711).
6 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
7 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
8 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
9 Comparison of Drug Metabolism and Its Related Hepatotoxic Effects in HepaRG, Cryopreserved Human Hepatocytes, and HepG2 Cell Cultures. Biol Pharm Bull. 2018 May 1;41(5):722-732. doi: 10.1248/bpb.b17-00913. Epub 2018 Feb 14.
10 Effect of nephrotoxicants and hepatotoxicants on gene expression profile in human peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2010 Oct 15;401(2):245-50. doi: 10.1016/j.bbrc.2010.09.039. Epub 2010 Sep 16.
11 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
12 O6-methylguanine-DNA methyltransferase activity and sensitivity to cyclophosphamide and cisplatin in human lung tumor xenografts. Int J Cancer. 1998 Sep 11;77(6):919-22.
13 Interaction of oxazaphosphorines with multidrug resistance-associated protein 4 (MRP4). AAPS J. 2010 Sep;12(3):300-8.
14 Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Exp Anim. 2018 Feb 9;67(1):71-82.
15 Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos. 1999 Jun;27(6):655-66.
16 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
17 Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res. 1997 May 15;57(10):1946-54.
18 CYP2C9 polymorphisms in human tumors. Anticancer Res. 2006 Jan-Feb;26(1A):299-305.
19 The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab Dispos. 2002 Jul;30(7):814-22.
20 Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006 Mar 13;25(11):1679-91.
21 Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics. 1997 Jun;7(3):211-21.
22 Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the pregnane X receptor. Cancer Chemother Pharmacol. 2009 Jun;64(1):35-43.
23 Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cellsImpact of prodrug schedule on P450 gene-directed enzyme prodrug therapy. Cancer Gene Ther. 2003 Aug;10(8):571-82.
24 Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol In Vitro. 2001 Jun;15(3):245-56.
25 Qualitative defects of pseudocholinesterase activity. Anaesthesia. 1967 Jan;22(1):55-68.
26 Effect of cyclophosphamide on gene expression of cytochromes p450 and beta-actin in the HL-60 cell line. Eur J Pharmacol. 2002 Aug 9;449(3):197-205.
27 Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk Res. 2007 Nov;31(11):1511-20.
28 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
29 Chronic cyclophosphamide exposure alters the profile of rat sperm nuclear matrix proteins. Biol Reprod. 2007 Aug;77(2):303-11. doi: 10.1095/biolreprod.107.060244. Epub 2007 May 2.
30 Cyclophosphamide perturbs cytosine methylation in Jurkat-T cells through LSD1-mediated stabilization of DNMT1 protein. Chem Res Toxicol. 2011 Nov 21;24(11):2040-3. doi: 10.1021/tx2003849. Epub 2011 Nov 1.
31 PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol. 2010 Sep;66(4):765-71. doi: 10.1007/s00280-009-1221-4. Epub 2009 Dec 30.
32 Suppression of spermatogenesis in patients with Beh?et's disease treated with cyclophosphamide and colchicine. Fertil Steril. 1981 Jul;36(1):76-80. doi: 10.1016/s0015-0282(16)45622-0.
33 Development of an integrated assay in human TK6 cells to permit comprehensive genotoxicity analysis in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2020 Jan;849:503129. doi: 10.1016/j.mrgentox.2019.503129. Epub 2019 Dec 27.
34 p53 mutations in cyclophosphamide-associated bladder cancer. Cancer Epidemiol Biomarkers Prev. 1998 May;7(5):397-403.
35 Cardiac toxicity of high-dose cyclophosphamide in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Int J Hematol. 2007 Jun;85(5):408-14. doi: 10.1532/IJH97.E0620.
36 Protein assay for heme oxygenase-1 (HO-1) induced by chemicals in HepG2 cells. J Toxicol Sci. 2009 Dec;34(6):709-14. doi: 10.2131/jts.34.709.
37 Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia. 2008 Jan;22(1):179-85. doi: 10.1038/sj.leu.2404959. Epub 2007 Sep 27.
38 Induction of hsp 70 in HepG2 cells in response to hepatotoxicants. Toxicol Appl Pharmacol. 1996 Nov;141(1):117-23.
39 Profiling the immunotoxicity of chemicals based on in vitro evaluation by a combination of the Multi-ImmunoTox assay and the IL-8 Luc assay. Arch Toxicol. 2018 Jun;92(6):2043-2054. doi: 10.1007/s00204-018-2199-7. Epub 2018 Mar 29.
40 The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), pro-apoptotic protein (p21(WAF-1)) and anti-apoptotic protein (bcl-2) in breast cancer cells. Breast Cancer Res Treat. 2003 Aug;80(3):239-44. doi: 10.1023/A:1024995202135.
41 Distinct Orchestration and Dynamic Processes on -H2AX and p-H3 for Two Major Types of Genotoxic Chemicals Revealed by Mass Spectrometry Analysis. Chem Res Toxicol. 2020 Aug 17;33(8):2108-2119. doi: 10.1021/acs.chemrestox.0c00104. Epub 2020 Jun 17.
42 Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard assessment of chemical carcinogenicity. Toxicol Sci. 2011 Dec;124(2):278-90. doi: 10.1093/toxsci/kfr225. Epub 2011 Aug 27.
43 Validation of a genotoxicity test based on p53R2 gene expression in human lymphoblastoid cells. Mutat Res. 2011 Sep 18;724(1-2):76-85. doi: 10.1016/j.mrgentox.2011.06.003. Epub 2011 Jun 17.
44 Reduction of plasma fibrinolytic activity following high-dose cyclophosphamide is neutralized in vivo by GM-CSF administration. Haematologica. 1993 Mar-Apr;78(2):105-10.
45 Inhibition of glutathione synthesis reverses Krppel-like factor 4-mediated cisplatin resistance. Cancer Chemother Pharmacol. 2012 Feb;69(2):377-85. doi: 10.1007/s00280-011-1708-7. Epub 2011 Jul 22.
46 Important role of caspase-8 for chemosensitivity of ALL cells. Clin Cancer Res. 2011 Dec 15;17(24):7605-13. doi: 10.1158/1078-0432.CCR-11-0513. Epub 2011 Oct 18.
47 Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin. Pharmacogenet Genomics. 2008 Nov;18(11):1009-15. doi: 10.1097/FPC.0b013e328313aaa4.
48 The evaluation of Cannabidiol's effect on the immunotherapy of Burkitt lymphoma. Biochem Biophys Res Commun. 2019 Nov 26;520(1):225-230. doi: 10.1016/j.bbrc.2019.10.001. Epub 2019 Oct 3.
49 [Establishment of MRP-overexpression subline of bladder carcinoma and its MDR phenotype]. Zhonghua Zhong Liu Za Zhi. 2000 Jul;22(4):273-5.
50 Manganese superoxide dismutase polymorphism, treatment-related toxicity and disease-free survival in SWOG 8897 clinical trial for breast cancer. Breast Cancer Res Treat. 2010 Nov;124(2):433-9. doi: 10.1007/s10549-010-0840-0. Epub 2010 Mar 23.
51 T-889C IL-1alpha promoter polymorphism influences the response to oral cyclophosphamide in scleroderma patients with alveolitis. Clin Rheumatol. 2007 Jan;26(1):88-91. doi: 10.1007/s10067-006-0308-0. Epub 2006 Apr 25.
52 Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol. 2005 Sep 1;23(25):6117-25. doi: 10.1200/JCO.2005.06.075. Epub 2005 Aug 8.
53 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
54 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
55 The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007 Aug;27(15):5499-513. doi: 10.1128/MCB.01080-06. Epub 2007 Jun 4.
56 Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008 Apr;22(4):808-18. doi: 10.1038/sj.leu.2405098. Epub 2008 Jan 17.
57 Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Toxicol In Vitro. 2018 Sep;51:74-82. doi: 10.1016/j.tiv.2018.04.010. Epub 2018 Apr 24.
58 Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.Mol Cancer Ther.2008 Oct;7(10):3129-40.
59 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
60 Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433-5.
61 Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26.
62 Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm. 2011 Apr 4;8(2):571-82.
63 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
64 Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma
65 Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010 Mar 15;126(6):1327-38.
66 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
67 Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5788-95.
68 Drug Interactions Flockhart Table
69 Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4.
70 Differential inhibition of human CYP2C8 and molecular docking interactions elicited by sorafenib and its major N-oxide metabolite. Chem Biol Interact. 2021 Apr 1;338:109401. doi: 10.1016/j.cbi.2021.109401. Epub 2021 Feb 5.
71 The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 2013 Nov 11;8(11):e78675. doi: 10.1371/journal.pone.0078675. eCollection 2013.
72 Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther. 2009 Jan;8(1):152-9. doi: 10.1158/1535-7163.MCT-08-0553.
73 Down-regulation of CYLD as a trigger for NF-B activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells. Int J Oncol. 2011 Jan;38(1):121-31.
74 Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol. 2011 Aug 1;82(3):216-26. doi: 10.1016/j.bcp.2011.04.011. Epub 2011 May 13.
75 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
76 Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012 Sep 10;12:402.
77 The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res. 2007 Oct 1;67(19):9490-500. doi: 10.1158/0008-5472.CAN-07-0598.
78 Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005 Oct 21;280(42):35217-27. doi: 10.1074/jbc.M506551200. Epub 2005 Aug 18.
79 Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem. 2017 Sep 8;292(36):15105-15120. doi: 10.1074/jbc.M117.783175. Epub 2017 Jul 3.
80 Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2010 Nov 15;70(22):9309-18. doi: 10.1158/0008-5472.CAN-10-1033. Epub 2010 Nov 9.
81 Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget. 2015 Sep 29;6(29):27953-65. doi: 10.18632/oncotarget.4446.
82 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
83 Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ Toxicol. 2018 Dec;33(12):1237-1244. doi: 10.1002/tox.22630. Epub 2018 Sep 6.
84 Sorafenib inhibits transforming growth factor 1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011 May;53(5):1708-18. doi: 10.1002/hep.24254.
85 Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol In Vitro. 2021 Mar;71:105063. doi: 10.1016/j.tiv.2020.105063. Epub 2020 Dec 1.
86 Sorafenib is an antagonist of the aryl hydrocarbon receptor. Toxicology. 2022 Mar 30;470:153118. doi: 10.1016/j.tox.2022.153118. Epub 2022 Feb 3.
87 Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia. 2011 May;25(5):838-47. doi: 10.1038/leu.2011.2. Epub 2011 Feb 4.
88 Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007 Oct 1;67(19):9443-54. doi: 10.1158/0008-5472.CAN-07-1473.
89 Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem. 2007 Oct 5;282(40):29230-40. doi: 10.1074/jbc.M703461200. Epub 2007 Jul 30.
90 Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010 Nov;124(1):79-88. doi: 10.1007/s10549-009-0714-5. Epub 2010 Jan 7.
91 Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80. doi: 10.1124/jpet.106.108621. Epub 2006 Sep 7.
92 Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs. 2011 Jan;22(1):79-88. doi: 10.1097/CAD.0b013e32833f44fd.
93 Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology. 2007;85(1):45-53. doi: 10.1159/000100508. Epub 2007 Mar 5.
94 Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther. 2011 Jun;10(6):1028-35. doi: 10.1158/1535-7163.MCT-10-1044. Epub 2011 Apr 11.
95 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
96 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
97 Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther. 2008 Nov;7(11):3519-26. doi: 10.1158/1535-7163.MCT-08-0138.
98 Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling pathways. Chem Biol Interact. 2023 Jan 25;370:110329. doi: 10.1016/j.cbi.2022.110329. Epub 2022 Dec 22.
99 Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem. 2011 Jul;46(7):2845-51. doi: 10.1016/j.ejmech.2011.04.007. Epub 2011 Apr 14.
100 The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol. 2007 Sep;72(3):788-95. doi: 10.1124/mol.106.033308. Epub 2007 Jun 26.
101 Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol. 2015 Apr;36(4):2323-34. doi: 10.1007/s13277-014-2839-3. Epub 2014 Nov 22.
102 Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer. 2009 Oct 31;9:387. doi: 10.1186/1471-2407-9-387.
103 The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms. Eur J Cancer. 2010 Mar;46(4):836-50. doi: 10.1016/j.ejca.2009.12.025. Epub 2010 Jan 12.
104 Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015 Feb;143(2):374-84. doi: 10.1093/toxsci/kfu235. Epub 2014 Nov 3.
105 Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 2009 Oct;8(20):1904-13. doi: 10.4161/cbt.8.20.9436. Epub 2009 Oct 6.
106 Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 2019 Sep 15;379:114665. doi: 10.1016/j.taap.2019.114665. Epub 2019 Jul 16.
107 Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett. 2013 Feb 1;329(1):45-58. doi: 10.1016/j.canlet.2012.09.020. Epub 2012 Oct 2.
108 The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005 Oct 20;24(46):6861-9. doi: 10.1038/sj.onc.1208841.
109 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.
110 The multikinase inhibitor sorafenib induces caspase-dependent apoptosis in PC-3 prostate cancer cells. Asian J Androl. 2010 Jul;12(4):527-34. doi: 10.1038/aja.2010.21. Epub 2010 May 17.
111 Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005 Oct 28;3:39. doi: 10.1186/1479-5876-3-39.
112 GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.
113 Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006 Sep;5(9):2378-87. doi: 10.1158/1535-7163.MCT-06-0235.
114 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
115 Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008 Oct;7(10):1648-62. doi: 10.4161/cbt.7.10.6623. Epub 2008 Oct 12.
116 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
117 TRIM62 silencing represses the proliferation and invasion and increases the chemosensitivity of hepatocellular carcinoma cells by affecting the NF-B pathway. Toxicol Appl Pharmacol. 2022 Jun 15;445:116035. doi: 10.1016/j.taap.2022.116035. Epub 2022 Apr 23.
118 Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol. 2020 Aug;142:111475. doi: 10.1016/j.fct.2020.111475. Epub 2020 Jun 6.
119 Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol. 2020 Sep 1;402:115117. doi: 10.1016/j.taap.2020.115117. Epub 2020 Jul 4.
120 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.